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Introduction

As the title Model Theory, Universal Algebra and Order insinuates, the present
module is mainly compiled from three parts. So why not make three different
modules or papers? The answer may be put in one single word: Structure.
What is structure in the context of mathematics? There are several answers to
this, but the one we would like to lie emphasis on is to understand structure
as giving a form to something otherwise formless, thereby exhibiting an implicit
meaning.

This is all very nice and eloquent, but how does it translate to the fields of
Mathematics lending their names for the title of this module? For Model Theory,
the answer is a very direct one: Model Theory is the Theory of structures,
where structures are sets with additional operations, relations and especially
designated elements called constants. First Order Logic provides languages to
speak about these structures on a formal level, and the connection between
structures and language is so close that we are able to draw conclusions from
one to the other and vice versa.

There is another meaning of structure which comes close to Order: Structure
as providing a way to arrange something otherwise formless. In this sense,
ordered sets are sets equipped with a binary relation (the order) structuring the
underlying set. On the other hand, ordered sets are none other than examples
of structures in the sense of the previous paragraph.

Remains the question where structure comes in with Universal Algebra: Al-
geras in the sense of Universal Algebra are again structures in the sense of
Model Theory, the language specified by the type of the algebra. Moreover, as
in the case of ordered sets, the fundamental operations lay a structure upon
the universe of the algebras, even some sort of division into parts if we consider
congruences.

Thus, the three fields Model Theory, Universal Algebra and Order Theory
share a close relation with the notion of structure in one or more senses of the
word. But this is clearly not the only relation between them. Universal Algebra

may be regarded as the theory of structures for functional languages, i.e. first—
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x INTRODUCTION

order languages without relation symbols. Ordered sets, on the other hand,
are relational structures, i.e. a first—order language being able to describe their
basic properties must be equipped with at least one relation symbol.

Therefore we could regard Universal Algebra and Order Theory as special-
izations or sub—branches of Model Theory. But one look at the table of contents
reveals that ordered sets are mentioned quite early in the development. The rea-
son for this lies in the fact that, being very fundamental and rather simple in
their definition, ordered sets qualify as nice examples for structures in the sense
of Model Theory. Moreover the possibility to show algebraic aspects shows that
we even need not limit ourselves to examples of relational structures. Ordered
sets serve at least in two way&ﬂ: As examples of structures for simple languages,
and as examples of algebras in the sense of Universal Algebra.

The last introductory remark concerns the role of Set Theory: Being a (clas-
sical) branch of Mathematics, Model Theory is based on Set Theory the same
way as are Group Theory or Calculus, i.e. proofs of Model Theoretical assump-
tions are done in the framework of Zermelo—Frinkel Set Theory. However, this
very Set Theory is formulated in a very simple formal language which can be
regarded from the point of view of first—order logic, so in principle, Set Theory
is an example of a theory in the sense of this module and allows thus for struc-
tures and models. This slightly disturbing (seeming) circularity will be partially

treated in the appendix of this module.

How To Use This Module

In principle there is nothing to say against using the three parts which make
up this module separately, i.e. the reader may restrict her or his attention
exclusively to the chapters and sections dealing with Model Theory or Ordered
Sets. However, the three subjects of this module are interdependent in several
ways, so the best procedure to ensure a deeper understanding surely is to read
them all.

IThere are more, of course: E.g., whenever any kind of structure is involved, substructures
will have to be considered as well, and these again, when looked at from the point of view of
set—inclusion, form an ordered set displaying nice properties.



Chapter 1

The (General Background

The aim of this chapter is to provide some general background knowledge of

concepts which will be used in the different contexts.

1.1 Set Theory, Featuring the Axiom of Choice

We will now introduce what little of set theory is needed to grasp the set theo-
retical notions used in this paper.

The notation we use for Set Theoretical notions is common standard, e.g. U
and |J will stand for (binary and arbitrary, respectively) union of sets, likewise
N and ) for intersection, C for the subset-relation (equality not excluded) and
P(S) will denote the power—set (the set of all subsets) of the set S.

A set is called finite if for some natural number n, there is a bijective
function (to be defined below) from this set into set {0,...,n — 1}, and infinite
otherwise. Infinite sets are further distinguished by their “degree of infiniteness”,
a concept formalized by the cardinality, a notion which unfortunately is too
complicated to be introduced in detail for the moment. The same holds for the
notion of (proper) classes. Every set is a class, but there are classes which no
longer are sets; those are called proper classes. For the moment it is enough to
think of classes as collections which are too big (or too general) to be sets; the
classic “infamous” example is the “set” of all sets, which rather turns out to be
the class of all sets. Other examples include the class of all cardinal numbers,
the class of all singleton sets, the class of all groups, rings, fields etc, the class
of L—structures for any formal language £, and any Mod ¥ for any consistent
set of sentences X (as will be shown later).

Clearly, the classical axioms of set theory are not to be questioned nor scru-
tinized. Thus we consider the implications of the existence of infinite sets such

as w and we will never worry about what axiomatic complications may be in-
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volved when dealing with constructions such as set—unions, powersets or even
instantiations of the schema of replacements. For the moment we may as well
simply have faith in the fact that set theory can be axiomatized by giving a
(rather simple, as far as syntax is concerned) set of sentences (axioms) in a for-
mal language which in its simplicity is almost boring, since its sole non—logical
constituent is the binary relation—symbol €.

Whenever we mention a model for a set of sentences, we are building this
model in our universe, which, in turn, is actually relying on another theory
formalized in first—order logic. From this point of view, Model Theory deals with
translations from arbitrary theories into Set Theory, and consistency—arguments
should always be relativized to the (unverified) consistency of Set Theory. But
clearly nobody who is serious about dealing with Model Theory is keeping this
“detail” in mind; you would not expect somebody working with real-valued
calculus to handle numbers as infinitely nested intervals either, would you?

Still, we feel obliged to make a few remarks on behalf of the axiom which in
itself was and still is subject of arguments about constructivism: The Axiom of
Choice. As should be well remembered, the Axiom of Choice (AC) postulates

something along the line of

“The cartesian product of a non—empty family of non—empty sets is

non—-empty.”
or

“Given a set of sets all of which are non—empty, there exists a func-

tion which, for each of these sets, picks one element.”

Although intuition cries for undisputed acceptance of these statements when
the sets involved are from everyday’s experience (products of the sets of natural,
rational, real numbers or finite sets), things tend to be less clear for exotic cases,
i.e. when the sets involved are way beyond the horizon of countability, let alone
of finiteness. It should be well known to any mathematician that the AC is
neither provable nor refutable from the rest of the axioms of set theory which
constitute the so called aziomatization of Zermelo and Fraenkel, provided this
axiomatization is in fact consistent, which in itself is still open to discussion.

We will not argue about the acceptability of the AC. In fact, the AC is central
to some of the constructions we will use, e.g. the ultraproducts in chapter[7] We
will make use of the AC not in its incarnations mentioned above, but in form of
the so called Zorn’s Lemma (ZL). Unfortunately, although ZL is in general easier

to use than the ACEI and closer to the construct aimed at, formulating ZL is a

IThis phenomenon mirrors the fact that the AC involves less structure and thus less in-
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bit more complicated since it involves notions from Order Theory (see Chapter
B] for the definitions of “ordered set”, “chain”, “upper bound” and “maximal

element”):

“If every sub—chain on some ordered set P has an upper bound, then

P has a maximal element.”

An instructing exercise in set theory is to show that the AC and ZL are in
fact equivalent.

Another notion of set theory that we will use is the cardinality of a set and
cardinal numbers. For the purposes of this module, think of two sets having the
same cardinality if and only if there is an exact correspondence (a bijection)
between their elements; i.e. we could write down two lists of their respective
elements of the same “length”. The length of this list would then correspond to
the cardinality of the sets.

We write card X for the cardinality of a set X. In this sense N, Q and Z
have the same cardinality (they all are countable), while R is “bigger” than
all of them (uncountable) and P(N) again has the same cardinality as R. We
will use the symbol R for the countable cardinality.

Since not any two sets have the same cardinality, we need to compare the
cardinalities (or sizes) of sets, and thus we write card X < cardY if and only if

there is an injective function (to be defined below) from X to Y.

1.2 Functions, Mappings and Operations

We assume that the reader is familiar with the concept of a function (or mapping
or map). For the sake of completeness, we note that a function is specified by

two sets X and Y and a set of ordered pairs
f=9{.,(&y), . }CXxY
such that for any = € X there is a unique y € Y such that (z,y)€ f, i.e.
for all z € X there is a y € Y such that (z,y)e f

and

(1,91), (T2, y2)€ f and x1 = x5 implies y1 = ya.

formation on the side of the structures, while when applying ZL, a major part of work is
already done by “preparing” the structure under consideration, i.e. by finding the requested
constructs that fulfill the premises of ZL. With the AC, the premises are rather weak, they do
not presuppose a structure. Thus, information mostly comes later when trying to use choice
functions or the like to find the eventual result originally aimed at.
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In this module, for f as above, we will write

e domain or source of f, dom f, for X, and co—domain or target of f,
cod f, for Y;

e the image of f, im f, for the set {f(z); z € dom f}, and if Z C dom f,
the image of Z under f, f[Z], for {f(z); x € Z};

e the value of z under f, f(z), for the unique y such that (z,y)e f,
provided z € dom f; in this case f is said to map x to y, which is

denoted by f(z) =y or f:ax—y;
e f: X — Y to denote that f has domain X and co-domain Y;

e idx for the identity map on X, i.e. the unique map idxy : X — X
with idx (z) =z for all z € X.

The following distinct cases are assumed to be well-known:

e A function f is said to be injective (or one—to—one) if and only if

for any x1,z9 € dom f, f(z1) = f(x2) implies z1 = x9;

e for Z CY, f is said to be onto Z if and only if
for any y € Z, f(x) = y for some z € dom f,

i.e. if and only if im F' = Z;

e if f is onto cod f, i.e. if im f = cod f, then f is simply called onto or

surjective;

e f is said to be bijective or a bijection if and only if f is both injective

and surjective.

If f is injective, then there is a canonical inverse function
f' imf — dom f

given by
i) = iff f(z) =y.

If f is injective, f~! is also injective, and of course dom f~! = cod f if and only
if f is onto and hence a bijection.
Please remember that, for a finite set X and f : X — X, f is injective if

and only if f is surjective if and only if f is bijective.
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The notion of operations will be used to denote the special case where
dom f = (cod f)™ for some n € N (for the notion of direct product, see
below). Therefore, operations are the only functions which can be iterated,
by which we mean the following: if f : X — Y and g : Y — Z, then go f
stands for the product of f and g, i.e. gof : X — Z with go f(x) =
g(f(x)). o is associative in the sense that fo(goh) = (fog)oh, provided the
notation is meaningful regarding domains and co—domains. If f : X — X
then the iterations f"* : X — X (n € N) are defined inductively over n by
% =idgom s and f"T = fo fm.

1.3 Cartesian Products and Projections

Cartesian or direct products are a widespread technique of constructing new
structures from given ones. If a collection of structures shares some specific
property, then products constructed from these structures may or may not share
this property, which is expressed by saying that the property is / is not preserved
under the construction of direct products. Both cases will be documented in
the different chapters of this module. For the time being, all we want to do is

recall the definitions and fix some notations in the context of direct products.

For K # 0,1et {Ay ; k € K} be any collection of sets. Their direct product
[l.cx Ar is defined to be the set of all maps a : K — |J,cx Ar satisfying
a(k) € A for all k € K. [],cx Ax is obviously empty whenever at least one
of the sets Ay is empty and the axiom of choice implies the converse to hold as

well.

The A’s are called the factors of the direct product er x Ak. A direct
product where all the factors are identical (or, as will be the case in the context
of universal algebras, isomorphic) is called a direct power and is written as

I .
A" instead of J],.; As.

The following notational conventions will be useful: Maps in [], o, Ax will
be written by listing their values, i.e. as (...,a(k),...) or (ax; k € K), and re-
ferred to as K-tuples. If K is finite, card K = m, we use the usual notation for
m-tuples (ay,...,an), and write also A1 X ... X A,, instead of er{l,‘..,m} Ay,
If the length m of an m-tuple is clear from the context, we may simplify
(a1,...,am) to d. This is especially handy if the inputs of some fundamen-
tal operation f are concerned where the arity is clear; in this case, we will

sometimes write f(@) instead of the more precise f(ay,...,a,).

It should be remembered that from a cartesian product we may extract the
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single factors via the so called (canonical) projections, denoted by =;, i.e.

o HAi — A, wi({a;; 1 €1)) =a,
iel
Ifforalli eI f; : B— A;, we will use the “family-notation” (f;; i € I)
to denote the function from Y to [],.; X; defined by

(fisiel): Y —][X: (fisiel)(y)=(fily);icl).

i€l

Thus, in the light of the aforementioned, (m;; ¢ € I) is nothing other than
dry,_, xi-

In the case of direct powers, there is something like a counterpart of the
canonical projections, the (canonical) embedding, mostly denoted by ¢. Thus
v+ A— Al is defined by (a) :=(a; i€ I)=(...,a,a,a,...). The image [A]
of A under the embedding ¢ is a specially denominated subset of the direct
product, the diagonal A 4; of A’:

Aar = 1(A) ={a € A" ; mi(a) = 7;(a) for all 4,5 € T} .

Do not be confused if in the further developments you will find the symboliza-
tion A 4: This is just a short form for A 42 which is common for the identity

equivalence relation on A.

1.4 Equivalence Relations

Equivalence relations (or equivalences for short) occur in many verses of the
mathematician’s lore. Dividing a collection in parts, thereby respecting certain
rules, is found e.g. wherever functions from one set to another are under scrutiny.
Belonging to the same part of the partitioning is the same as “being equivalent”
under some equivalence.

Since equivalence relations are binary relation on some set, we must first fix
the notions concerning binary relations. If X is any set, then a binary relation
¥ on X is a set of ordered pairs of elementsEI of X, ¢ C X x X. Because binary

2In Set Theory, relations are regarded as given by their extensions, so a relation is the
same as the set of all pairs that are defined to stand in relation. This characteristic of
relations is sometimes called the extensional view, as opposed to the intensional view, where
relations are identified with their meaning, so that relations actually may be extensionally
equal but still intensionally different. In order to distinguish relations intensionally, we must
look at their meaning, and we are bound to leave the field of Mathematics and get involved
with philosophical questions. As an example, consider the set of non—negative reals, Rg,
and the relations R; and Ra given by xzRyy if and only if y = 22 and xRay if and only if
z = /y. Extensionally, the relations are both equal to the set {(z,22); z € Rg‘}, so they
may not be distinguished from the extensional point of view. But intensionally they differ,
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relations are sets, the operations set—union, —intersection etc. can be applied to
them.

Infix notation is common practice with binary relations as you may know
from earlier experiences with < or €. Therefore, we usually write zdy rather
than (z,y)€ 9.

Definition 1.4.1 A binary relation 1 on some set X is called an equivalence

relation iff, for all x, x1, 2, x3 € X, the following three conditions are met:
(i) zdz (reflexivity)
(i) z1Yze = z2¥z1 (symmetry)

(iii) [x1922 and xo¥x3] = x1Y¥zs (transitivity)

Eq X is used to denote the set of all equivalence relations on X.
Please remember that for 9 C X x X, X is called the carrier of 1.

The notation x = y mod ¥ for xvy is also common for equivalence relations.
The set [z], :={y € X ; ydx} is called the J—equivalence class or the J—block
of . If the actual choice of ¥ is clear from the context, the subscript » is
sometimes dropped, thus [z] will stand for [z],.

The definition of equivalence directly implies that equivalence—classes [z]
and [y] (for x # y) are either disjoint or identical, thus dividing X into parts
that have no elements in common. This is what is meant by “{[z]; x € X} is a
partitioning of X7, and consequently the equivalence classes are partitions
of the set X. The set {[z],; € X} is called the quotient (set) of X relative
to ¥ and is denoted by X/4¥.

The process of assigning to an element z € X its equivalence class [z] defines
a function 7y : X — X/9 which is usually called the (canonical) projection
or (canonical) map (associated to ). It is easy to see that my is surjective.

Every equivalence uniquely determines a partitioning of the underlying set
X. Interestingly, the other direction works equally well: Any partitioning of X
gives rise to a unique equivalence relation by defining to elements equivalent if
and only if they belong to the same partition. Partitioning and equivalences are

dual notions.

Example 1.4.2 To mention but two elementary examples, on any set X, there
are a smallest (w.r.t. C) equivalence relation {(z,z); x € X} and a largest
equivalence relation X x X. It is common practice to denote these by Ax and

V x respectively.

since calculating the square-root is in general more complex than calculating the square, so
we might say that R is of higher complexity than Rj. Of course the same remarks apply to
functions as well, since functions are nothing but special kinds of binary relations.
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A very natural place to look for equivalences is in the context of functions
(mappings, morphisms). By declaring to be equivalent all those arguments
x € X which are mapped by a function f : X — Y to the same function—
value yo = f(zo), we are defining an equivalence relation, usually called the
kernel of f, denoted by ker ( f); i.e.

ker () ={(z1,22)€ X x X5 f(z1) = f(z2)}.

Vice versa, starting from an equivalence relation 1, its natural projection is a

function whose kernel is exactly ¥. To sum up:

Remark 1.4.3 Every equivalence relation ¥ gives rise to a function 7y (the
canonical projection associated to ¢J) defined by my(x) := [z],, which has

exactly ¢ as its kernel.

We will come across a multitude of equivalence relations in the following
chapters, but mostly will impose some sort of “structure” in the form of opera-
tions or relations upon the carriers, and the equivalences of interest will respect
this additional structure, i.e. they will be compatible (to be defined later) with
the operations and relations; in this case we will call the equivalence relations

congruences (cf. Homomorphism Theorem [10.1.5)).

1.5 Reduced Products

The constructions of the last two sections combine nicely to a variant of prod-

ucts, the quotients of direct products under equivalence relations.

Definition 1.5.1 If (X, ; i € I) is a family of sets taking indices in some (non—
ier Xis
s (wi5 4 € IE]];c; Xi} of equivalence—

~ )

empty) set I, and if ~ is an equivalence relation on the direct product [
then theset [],o; X / ~={[(z:; i € I)]
classes under ~ is called the reduced product of the family (X;;i¢€ I)
under ~.

If X; = X; = X for all 4,5 € I, the reduced product under ~ is called a

reduced power under ~ and is denoted by X!/ ~.

Exercise 1.5.2 (To test your ability to see the obvious:) Show that, for a
family (X;;i€I) (I # 0) and 7; :]],c; Xi— X; the canonical projection
onto the 1th component, there is a very natural bijective correspondence between
[licr Xi /ker m; and X;.
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Of course, both in model theory and in universal algebra, we will be more
specific in our choice of equivalence relations. There is a procedure applicable

to both fields which involves the notion of a filter over the index set.

Definition 1.5.3 Let S be any non—empty set. A system F C P(S) of subsets

of S is called a filter over S iff the following conditions are met:
(i) U, U e F = U, NU3 € F,
i) Ue F,UCVCS=VeZF, and

(iii) 0 ¢ F #0.

To put it in mathematical prose, filters are sets of subsets of some set, and

they are
(i) closed under super-sets (“upper—closed”),
(i) closed under intersection,
(iii) a proper, non—empty subset of the power—set.

Examples of filters are easy to find: If z € X, then {Y C X;2z€Y} isa
filter over X; also {X} is a filter over X.

Filters give rise to equivalence-relations in a canonical way.

Exercise 1.5.4 Show that for any filter F over the set I, the relation ~
defined on the direct product [[;.; X; by
(isi€D~gly;iel) it {iel;x=y}eF

is an equivalence.

For a less trivial example of a filter, let S be an infinite set and P.o¢S be the
set of all subsets Y C S such that S \ Y is finite.

Exercise 1.5.5 Show that P..sS is a filter on S.

Expressed in terms of ~p_, g, we see that (zs; s € S)~p, ,s5(ys; s € S) if
and only if {s € S; x5 =ys}€ PeorS, 1.e. if and only if {s € S; x5 £ ys} is
finite, i.e. if and only if  and y agree on almost all components.

Whenever we construct a reduced product over some equivalence ~x which
stems from a filter in the sense of we will denote the resulting reduced
product by [],.q Xs /F (instead of [[,.g Xs / ~7) and call it the reduced
product under F. Accordingly, the canonical projection 7. . will be written

as mx. For the reduced power, similar notations apply.
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Finally, as a counterpart to the canonical projection 7# in the case of the
reduced power X /F, we would like you to check as an exercise that the canon-
ical embedding ¢ : X — X9 /F defined by «(x) := [(z; s € S)] is injective
for any filter F.



Chapter 2

Logic Through the Looking
Glass

The aim of this chapter is to review the concepts of first—order logic that are
indispensable for the understanding of the present paper. For the sake of brevity
we will omit all proves and leave out some details of definition, especially where
these details do not present one but of many possibilities to describe the desired

notion.

2.1 What You Should Remember From First—
Order Logic

Dealing with model theory the way we plan to relies on a certain amount of
knowledge of the (more or less) basic concepts from first—order logic. Therefore,
we suggest that the reader becomes acquainted with the following notions, all
of which have been dealt with in detail in Module N4.1:

1. Formal languages for first—order predicate calculus, henceforth simply

called formal langages.
2. Structures for formal languages.
3. Terms, formulae, sentences and proofs in formal languages.
4. Satisfaction of a formula in a structure under a valuation.

5. A model of a formula or a set of formulae.

11
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Figure 2.1: Kurt Godel

6. The term-structure of a formal language, as it is used in the proof of

completeness.

The notational conventions, abbreviations and definitions we will follow (un-

less otherwise stated) are:

e Formal languages (denoted by the calligraphic letter £ with or without
subscripts) are characterized by their non-logical symbols which consist
of constant—, relation— and function—symbols. All other symbols used to
build well-formed expressions constituting the syntax are common to all
languages. In fact, the actual form of the non—logical symbols does not
matter, since a language is fully specified by the arity—functions p for
relation— and A for function—symbols and the index set K for constant—

symbols.

e Formal languages are containing equality as a logical symbol =; thus we
should call our formal languages “formal languages for first—order logic
with equality”. Accordingly, an appropriate set of axioms for the notion

of formal deductions is assumed to include axioms for equality (cf.

below).
e Structures are denoted by calligraphic letters such as A, B,C ..., formulae
by lower case Greek letters «, 3, ..., ¢, 1, . .. and sets of formulae by capital

Greek letters X, ®. . ..

e Formalisation of first—order logic and its proofs is done by using a Hilbert—

style axiom system, which consists of axioms and inference rules. In this
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system proofs are understood to be finite tupels of formulae obeying cer-

tain constraints; the axioms are

e For a formal language £, Tm £ denotes the set of L—terms, Fml £ denotes
the set of L—formulae, Sen £ denotes the set of L—sentences, i.e. formulae

without free variables.

e Also, CT(L) denotes the term—structure of £, i.e. the set of L-terms that
do not contain any variables. Moreover, if ¥ C Sen £, then CT(L) /X is
used to denote the set of equivalence—classes of CT(L) under the equiva-
lence relation of equality provable from X, where two terms t1,to € CT(L)

are equivalent iff ¥ ¢ = 5.

e Sentences suffice, i.e. results are mostly of interest when formulated for
sentences instead of the more general formulae; nevertheless formulae con-

taining free variables will take a central role in proofs and lemmata.

e As is common practice, - denotes (syntactical) provability or deducibility,
= denotes the relation of satisfaction of a formula. (= will also be used to
denote semantical implication, which, by Goedel’s Completeness Theorem,

is in fact equivalent to the syntactical provability.)

e Consistency is a property of sets of sentences, namely that not everything
is provable from a certain set. A set of sentences that is not consistent is

called inconsistent.

Equally vital for the understanding of the concepts introduced in this book

are the following properties of first—order logic, proved in the very same source:

1. Compactness:

A set X of sentences has a model iff every finite subset of ¥ has a model.

2. Completeness:
IfYXFgpand A=Y, then A=

3. Correctness:

If ¥ I/ ¢, then there is a model of ¥ which is not a model of ¢

Being a rather fundamental branch of mathematics, Model Theory relies on
little or no prerequisites. Nevertheless, there are some basic concepts from Set
Theory and algebra, the latter because of the large supply of examples drawn
from classic theories of groups, rings or fields. Knowledge of the differences
between a proper class and a set, of the notion of cardinalities and concerning
the possibilities of axiomatizations of Set Theory are thus of some help, but not

really necessary for the understanding of our treatment of Model Theory.
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Now for the good news: The reader is NOT assumed to be familiar with
any of the concepts of Universal Algebra or Order Theory. Model theoretical
constructions will be introduced in just enough detail to leave room for lots of
exercises. Since we are not introducing something entirely new to the world of
mathematics, but are merely trying to show ways of getting used to some ideas,
the emphasis will lie on providing the students with opportunities to get their
hands dirty and write their own detailed proofs to deepen the understanding of

the concepts formerly unknown to them.

2.2 Syntax

Among the main subjects of discourse in this module are the constructs based
on languages: On an intuitive level, a (formal) language (from the syntactical
point of view) is a collection of strings formed from a fixed supply of (pairwise

distinct!) elements called symbols by a fixed set of rules (grammar).

Definition 2.2.1 A formal language is defined by a triple £ = (), u, K)
where, for some sets I and J, A : [ — Nand g : J — N, and K is some set.
I, J and K are the sets of indices of relation—, function— and constant—
symbols respectively, and A and p are the arity functions of the relation— and
function—symbols, respectively; i.e. A(j) is the arity (number of arguments)
of the relation symbol R;, while u(j) is the arity of the function symbol f;.

Moreover we assume we are given
e countably infinitely many variables vg, vy, ...
e an equality—symbol =
e logical connectives A, -,V

e auxiliary symbols (brackets)

Definition 2.2.2 The L-terms of the formal language £ = (A, u, K) are de-

fined inductively as follows:
e every variable v; and, for every k € K, the constant symbol ¢ are L—terms
e if j € J and t1,...,t,(;) are terms, then f;(t1, ..., t,;)) is a L-term

A L-term is called variable—free if it does not contain any variables, i.e.

iff it is built up using constant— and function—symbols exclusively.

Brackets will be placed to provide unique reading of the terms. Also, freeing
ourselves from the chains of the somewhat bulky prefix notation, we will tend to

use infix notation where binary function symbols (i.e. of arity 2) are concerned.
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Definition 2.2.3 The L—formulae of the formal language £ = (A, u, K) are
defined as follows:

o if t,t',t1,...,t\;) are terms, then ¢t = ' and Ry(t1,...,t\)) are L-

formulae (so called atomic—formulae)

e if ¢ and ¥ are L—formulae and v, is a variable, then =y, ¢ A1 and Vv, p

are L—formulae.

(The same notational conventions will be followed that were mentioned for
terms.)

A negatomic L—formula is a L—formula which is either atomic or the
negation —} of an atomic formula ¢%. A variable—free negatomic L—formula
is of course a negatomic formula not containing any variables, i.e. negatomic
formulae built up from variable—free terms exclusively.

The scope of the (universal) quantifier Vv, in Vv, is ¢. An occurrenceﬂ
of a variable v,, is called free if it does not lie in the scope of a quantifier Vv,,.
An occurrence that is not free is called bound. We talk of variables being free
or bound in a formula to indicate that there are free or bound occurrences of
this variable, respectively. A formula containing no free occurrences of variables

is called a sentence.

The symbol = is used to denote syntactical equality (“equal as strings”) of
terms or formulae.

The following abbreviations will be used:

e YV Y :=(mpAY)
o p— Y= (np) VY
e 0P (pAY)V((mp) A (=)

o Ju,p = Vu,—p

For a formal language £, we let Tm £, Fml £ and Sen £ denote the set of all
L—-terms, L—formulae and L—sentences, respectively.

Logic deals with proofs and deductions, so next we want to start building
well-formed sequences of formulae that we will call (formal) proofs. A formal
proof is an object which has to obey certain rules of formation as well, but since
the actual way we restrict ourselves by such rules is (1) by no means unique and
(2) strictly a matter of syntactic preferences and proof theoretic intentions, an

explicit description of a formal system of proof cannot be our goal here. Let us,

1A variable occurrence is best thought of as the information describing what variable
appears at which position inside a string.
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for the moment, just fix that we are given a set of formulae called axioms and
a set of rules, where a rule is an “instruction” how to prolong a given proof
to a longer one. Then, for any set ¥ of formulae (sometimes called premises),
we define a (formal) proof from X to be a finite sequence of formulae such
that each component of this sequence is either an axiom, an element of ¥ or
is deducible from components with smaller indices by application of one of the
rules. We moreover call a sequence a proof of ¢ from ¥ iff it is a proof from
3 and ¢ is its last component, and we denote this fact by ¥ . If there is
a proof of ¢ from the empty set of premises, then we write - ¢ and call ¢ a
theorem. (This notion of formal definition of provability is called a Hilbert—
style axiomatization of first—order logic, thus hinting at the fact that there
are other ways of doing this formalizing.)

The actual implementation of this notion of “formal proof” is actually rather
arbitrary, although we are to pay attention that completeness and correctness
(see below) are complied with, since otherwise there is no sense in even start
trying to do model theory. But showing faith in our system of proof being
both complete and correct, we may impose some further properties such as

recursiveness or recursive enumerability of the set of rules and axioms.

2.3 Semantics

To enable us to do some model theory, we most certainly need to know what
a model is. Our first aim is to establish an intimate connection between our
notion of proof (formalized in whatever which way) and the notion of satisfaction
and truth in some model, to be defined in an instant. We therefore need the
definition of the semantical constructs we will deal with, together with the means

of interpreting the syntactical elements:

Definition 2.3.1 For a formal language £ = (A, u, K), a L—structure is a
farnily .A = <A, <R;‘A>i61; <f;4>j€J, <C']/€4>keK> Where

e A =:|A|is a non-empty set, the universe of A,
o for every i € [, R C AND

e for every j € J, fJA A A

e for every k € K, cf* € A.

R;‘l, fJA and ckA are called the interpretation of R;, f; and ¢y, respectively,
in A.



2.3. SEMANTICS 17

Definition 2.3.2 A variable assignment function, or assignment or val-
uation, into the L-structure A is a function h from the set of variables into |.A|.
If  is a variable and a € | A, then the modified assignment h[(?)] is defined
to be the same assignment as h, except that h(z) = a. Clearly, a modified

assignment is an assignment.

Definition 2.3.3 For a L-term ¢, a L—structure A and a valuation h, the in-
terpretation (or meaning) t“[h] of ¢ in A under h is defined byﬂ

(o)A =g, (va)h] = R(vn)

(fj(th e ,tu(j)))A[h} = ng(tf\[h]v s ’tf(j) [hD

Definition 2.3.4 For a L—formula ¢, a L—structure A and a valuation h, we
define the relation |= of satisfaction, notation A = ¢[h] (“A satisfies ¢ under

h), by Noetherian induction as follows:
o A=ty = to]h] iff t{[h] = t5'[h],

o A= Ri(t1,...,tn)[h] iff (L0, ..., t20]) € RA,

o A —p[h] iff not A = p[h],
o Al ny[hliff [A =[] and A = ¢[n]],
o AEVu,piff for all a € |A|, A= olh(")].

If not A |= @[h], then we write A [~ ¢[h].
The notions of satisfaction, validity in a structure, validity and model gen-

eralize to sets of formulae in the obvious way, e.g. A = 3 iff, for all p € X,
A= .

Definition 2.3.5 Let ¢ be a L—formula, A a L-structure and h a valuation
into A. If A |= ¢[h] for all valuations h, we say that ¢ is valid in A, or A is
a model of ¢, notation A |= . If a L—sentence « is valid in all L-structures,

then we call a valid, notation | ¢.

Definition 2.3.6 For a L—sentence « and a set of L—sentences 3, we say that ¢
is a semantic consequence of or follows semantically from ¥ or 3 implies
 semantically, notatiorﬂ Y E a, iff, for all L—structures, A | ¢ provided
AEZX.

2Do not let yourself be confused by some symbols appearing on both sides of the defining
equation. This is merely a justification for baptizing the structure’s relations, functions and
constants the way we did.

3Some textbooks use K- instead of |= to distinguish notationally the two notions of satis-
faction and semantical implication which, in the light of completeness, turn out to be not that
different.
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2.4 Completeness

We have thus defined the definitional foundation on which to build the main
body of mathematical logic. To show that a notion of proof is suitable for
our purposes, we must show that it is accurate enough in the sense that the
provability is an exact formalization of the semantical implication. This is the
crucial point in the main theorems of any introductory lecture on first—order
logic, and it is faced mostly in the form of the so called Completeness Theorem

and the Correctness Theorem:

Theorem 2.4.1 (Completeness) Let £ be a formal language, ¥ C Sen £ and
a € Sen L. Then
Y = a implies ¥ F a.

Theorem 2.4.2 (Correctness) Let £ be a formal language, ¥ C Sen £ and
a € Sen L. Then
¥ F « implies ¥ = a.

Since our definition of sentence or even theorem does not mention meaning-
fulness in the context of contradiction, we might want point out the following

distinction:

Definition 2.4.3 ¥ C Sen L is called inconsistent or contradictory iff ¥ - «

for all & € Sen L. If ¥ is not inconsistent, we call it consistent.

There are several equivalent formulations of this. Since the above is the most
common, we chose it as a definition, but actually we would prefer the following

characterization which could serve as a definition of inconsistency as well:

A set ¥ of sentences is inconsistent iff ¥ F —wvy = vy (where vy is

simply the first of our infinitely many variables).

The point in preferring the latter formulation to most others is that it is
less depending on the language than the former. So what we should be doing
first thing we learned that there are inconsistent sets is actually to prove that
inconsistency does not rely on the language. But, having been taught that
first—order logic satisfies completeness, we might argue semantically, and clearly
having a model is not a matter of language.

Please note the slight shift in formulation after we defined satisfaction: We
no longer talk about formulae but restrict our attention to sentences. This is
justified by a result that can be found in most lectures and textbooks dealing
with mathematical logic and may be summarized with by “sentences suffice”,

i.e. results about provability and satisfaction remain valid when formulae are
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replaced by their universal closure, i.e. the formulae prefixed by just enough
universal quantifiers to bind all free variable occurrences. Since this is subject
to mere syntactical investigation, we restrain from going into more details at
this point.

Completeness and correctness attain an even more impressive formulation

using the notion of consistency:

Theorem 2.4.4 (Strong Completeness) Let £ be a formal language, ¥ C
Sen £. Then
> has a model iff ¥ is consistent.

One direct consequence of Completeness must be mentioned at this point,
since it will be used and, moreover, reformulated semantically in the course of
further action: The Compactness Theorem. Compactness should ring a whole
Christmas trees full of bells to the reader who has ever dealt with topology,
order theory, Set Theory or a somewhat more universal breed of algebra than
mere group theory. In math, compactness is usually denoting the possibility of
reducing an infinite “something” to a finite part of itself without losing infor-
mation or characteristics of the original entity. The most famous (or notorious)
instantiation of this phenomenon is without reasonable doubt the compactness
of topological spaces. Roughly speaking is a topological space called compact
if, whenever it can be written as the union of subsets (which are bound to some
further constraints, but which we need not concern with here), then it is already
equal to the union of a finite subset of this collection of sets. Compactness in the
context of first—order logic is similar in the overall statement, but contrary to
topological compactness, it is a property true for all systems of first—order logic
fitting the definition we gave above, thus we do not speak of the compactness

of some systems, but we merely formulate the following result:

Theorem 2.4.5 (Compactness) Let £ be a formal language, ¥ C Sen L.
Then

> has a model iff every finite subset of 3 has a model.

The proof of this theorem, which provides a lot of simplification on the part of
consistency arguments for arbitrary sets of sentences, is almost disappointingly
simple once we are equipped with completeness: Inconsistency of 3 would mean
deduction of something contradictory, and deductions are defined to be finite

sequences!
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2.5 Term Structures

The proves of the theorems of correctness and completeness rely on the actual
formalization of “formal prove”. Still, certain techniques are bound to be used
despite this freedom of choice, and at least one of these techniques even will
pop up now and then in model theory as a means of constructing certain min-
imal models. The reader familiar with correctness proves will most surely feel

remembered by parts of the next

Definition 2.5.1 Let £ be a formal language and ¥ C Sen L.

1. If V is a set of variables, Tmy £ denotes the set of L—terms ¢ such that all
variables in ¢ are contained in V. On the set Tmy L, define the equivalence
relation &y, by t1 &y to iff ¥ F ¢1 = t3. Moreover, for ¢t € Tmy L, let [¢]

denote the =x—equivalence class of ¢.

2. Define the term—structure over V modulo ¥ to be the structure
Tmy L£/% defined by

o |Tmy L/%| :={[t]; t € Tm L}
Tmy L/T .
° <[t1], ceey [tA(i)D € R, iff ¥+ R;(tq,... 7t>\(i))

o £ D) = ()]

° c’g‘mv L/% — [Ck]

3. CT(L) := CT(L) /0

If V =10, then Tmy L is the set of all closed £L—terms and often denoted by
CT(L). The closed term structure CT(L) /2 is in fact of great importance since
it constitutes the model constructed in most proofs of the correctness theorem
(over a language which is enriched by enough constant symbols to witness all
existential sentences).

If V is the set of all variables, then of course Tmy L is of course Tm L.

Clearly, calling Tmy £/X the term-—structure is a misuse of terminology and
might be slightly misleading, since Tmy £/ need not be a structure as defined
above. But with some additional precautions these obstacles may be circum-
navigated. We simply have to take care that there are actually any terms of
the desired kind, i.e. we must provide at least one constant or one variable for
the term—structure to be a real structure. This proviso lacks importance in the
context of the proofs of completeness, since there we are dealing with sets of
sentences that, by some preceding constructions, are sentences of a language
we expanded by adding constants that actually witness all possible existentially

quantified formulae provable from our original set of sentences . We do not
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expect for the reader to understand every single detail of this rather talkative ex-
posé (or even believe all of it), but we like to point out that the constructions we
will encounter in our developments circling the Lowenheim—Skolem—Theorems

are close relatives of the term—structures defined above.
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Chapter 3

Ordered Sets

In this chapter we present a first approach to the subject of order and partially
ordered sets. Being one of the most fundamental notions in mathematics, order
is elementary for Model Theory and omnipresent throughout model theoretic
considerations. Constructs stemming from ordered sets are used in model the-
oretic treatments. Ordered sets themselves are used as examples for structures
and algebras.

Moreover, ordered sets offer two different aspects, a relational aspect (as sets
equipped with a binary relation) and an algebraic aspect (as sets with binary
operations, i.e. as algebras, cf Section Definition . These two aspects
interact nicely and provide the opportunity to reformulate results proved for

one aspect in the context of the other.

3.1 Order and (Semi-)Lattices

To establish nomenclature and notation, we include the relevant definitions.

Definition 3.1.1 Given any set X, an order(—relation) on X is a binary

relation p on X which is

o reflexive (zpz for all z € X),
e antisymmetric (zpy and ypx together imply = = y for all 2,y € X) and
e transitive (zpy and ypz together imply zpz for all x,y,z € X).

The pair X :=(X, p) is then called an ordered set or poset, the latter
expression reflecting the older nomenclature partially ordered set. Orders are

customarily denoted by symbols like <, <, C or similar. X is called the carrier

23
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or universe of X. If the order is clear from the context, we will sometimes not
distinguish between X and X.

Definition 3.1.2 Let < be an order on the set X.

1. <istotaliff z <yory <z for all z,y € X, in which case (X, <) is called

a totally ordered set or chain.

2. The dual order of < is the order > on X defined by z > y if and only if
y <z (for all z,y € X).

3. The strict order associated to <, usually denoted by the symbol <, is
defined by z < y if and only if both <y and x # y.

Let us establish a brief connection to Logic and Model Theory. We no-
tice that in a formal language £ with at least one binary relation—symbol, we
can express the conditions for reflexivity, antisymmetry and transitivity by £-
sentences «;., a, and ay respectively. Thus, a poset is an L—structure Str X
satisfying {a,,aq,a:}. Clearly, totality is expressible as well, so the class of
posets and the class of totally ordered sets are both describable in terms of
first—order logic. In later chapters we will denote this fact by calling these
classes elementary (cf. Chapter [4] Definition [£.1.6)).

Example 3.1.3

1. Define the binary relation p on R by zpy iff there exists z € R such that
x + 22 = y. Then p is an order on R — in fact, it is the natural one, xpy
iff x <uy.

2. Define 6 on N by zdy iff there exists z € N such that zz = y. ¢ is the
divisibility order on N, usually denoted by z|y.

3. In our context, a very common type of ordered set has its carrier X consist-
ing of certain designated subsets of some set U. Its order is then defined

by the subset relation C in U.

4. (For those with some exposure to Set Theory.) A set « is an ordinal iff
every element of « is also a subset of a (i.e. « is a transitive set) and the

binary relation € is a total order on 05E|

!Readers familiar with some of the more exotic variants of set theory will notice that we
implicitly presupposed the axiom of foundation to hold for our set theoretical universe. This
is common practice, which is why we mention it only in this footnote.
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5. For any formal language £ we have a natural order on the set of L—
expressions, the order of suberpression. Specializing to terms and formu-
lae, we might consider sets of terms or formulae to be ordered by the
sub—term— or sub—formula-relation, respectively. Even if this example
seems to be a bit farfetched, later definitions and results will justify its

mention here.

Definition 3.1.4 Let S be a subset of an ordered set (X, <).

1. s € §is called greatest element of S if x < s for all z € S
s € S is called least element of S if s < x for all x € S.

2. s € S is called a maximum of S if, for all z € S, s < z implies s = z;

s € S is called a minimum of S if, for all z € S, x < s implies s = z.

Clearly, by antisymmetry, greatest and least elements of S are unique, pro-
vided they exist. Any greatest element of S is a maximum of S, and any least
element of S is a minimum of S. Maxima and minima need not exist for a given
subset, and even if they exist, they need not be unique. (Exercise: Prove these

statements!)

Example 3.1.5

1. N with the natural order < has a least element as does any subset of N.

But greatest elements and maxima only exist for finite, non—empty subsets
of N.

2. Consider some non—empty set X with p being the diagonal of X, i.e.
p ={(z,x); z € X}. Then, p is indeed an order on X. Any element
x € X is both a minimum and a maximum for any subset S C X with

x € S, but only singleton subsets {x} have a greatest and a least element.

Later experiences will teach us that not all notions of interest are expressible
in first—order logic, not even in such a (seemingly!) simple theoretical context
as the one of ordered sets. For instance, the statement “every subset has a
supremum” exceeds the limits of first—order logic. Another such notion is given

in the following definition.

Definition 3.1.6 An order < on some set X is called noetherian or well—
founded if, for every non—empty subset S C X, there exists a minimal element

of S. We then say that (X, <) is a noetherian order or a noetherian poset.
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Figure 3.1: Emmy Noether (1882-1935)

In structural induction, we made use of a fundamental property of noetherian
orders before we even knew about them. The next proposition is a justification

in retrospect.

Proposition 3.1.7 (Noetherian induction) Let (X, <) be a noetherian poset.
Assume S C X is non—empty and for all z € X,

[for all y, if y <z and y # x, then y € S| implies z € S.
Then S = X.

Proof. By way of contradiction, assume (X, <) is noetherian and S C X

satisfies
[for all y, if y <z and y # z, then y € S] implies x € S, (*)

but S # X. Then X \ S # (), i.e. we find a minimal element o € X \.S. Then,
for any y with y < ¢ and y # x¢ we have y € S by minimality, but this implies
xo € S by (x), contradicting the choice of xy. |

Natural induction is a special form of noetherian induction; structural induc-
tion for terms or formulae of formal languages is another example. If you know
your way through Set Theory and ordinals, you will be familiar with the fact
that every ordinal is noetherian (ordered by €), and if we assume the Axiom of
Foundation to hold, every set is noetherian.

Using structural or natural induction as a tool to prove statements is only
valid if the respective order (sub—formula, sub—term, < etc.) is noetherian.
For the set N of natural numbers and < this is well-established, and for con-
structs in the context of formal languages, we must rely on the finiteness of the
expressions.

Let us have a look at some notions which are vital for the algebraization of

orders (cf. Chapter [11)).
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Definition 3.1.8 In a poset (X, <), an upper bound of S C X is an element
u € X such that s < wu for all s € S. A least upper bound of S is an upper
bound w of S satisfying v < v for every upper bound v of S. It is clear by
the antisymmetry of < that least upper bounds are unique whenever they exist
(the proof is left as an exercise). A least upper bound of S is also called the
supremum of S and written Sup S (or Sup. S to emphasize the order relation).
If Sup X exists, it is called the greatest element or top of X and is sometimes
written Ty .

Analogically, a lower bound of S (in X) is an element ! € X such that [ < s
for all s € S. The notions of a greatest lower bound, of S alias infimum
of S, and a least element of X, alias bottom of X, are defined analogically
with notations Inf S (or Inf<S) and Lx.

Note that the special cases Sup () and Inf () coincide with Ly and Tx re-
spectively, provided they exist. (Exercise: why?)

Definition 3.1.9 For X =(X,<) and u,v € X we define the interval [u,v]
to be the set {z € X ; u <z < v} (which is empty unless u < v); similarly, the
lower end determined by u is (u] :={x € X ; < u} and correspondingly the
upper end is [v) :={z € X ; v < z}. We say that u is a lower cover of v (and
v an upper cover of u) iff [u,v] = {u,v}; this situation is frequently denoted
by u < v or v = u. An upper cover of Ly is called an atom of X, similarly, a
coatom is a lower cover of T . Elements u,v € X are said to be comparable
iff u < v or v < u, incomparable otherwise, the latter situation being denoted
by ||. A subset S C X such that ul|v for all u,v € S is called an antichain.

Example 3.1.10
1. In Example [3.1.3|[[] the set {r € R; 2pr?} has no infimum while Inf V' =0

for V= {1/n;n € N}. There are no covers in (R, p), and no incomparables

since (R, p) is a chain.

2. In Example B.1.3|[2] we have Ly =1 and Ty = 0. The atoms of (N, §) are
precisely the prime numbers (which form an antichain), while there are no

coatoms.

Exercise 3.1.11
Prove the statements in Example[3.1.10} especially, show that there are no covers
in (R, p), Inf {1/n;n € N} = 0 and that in Example [2| the atoms are exactly

the prime numbers while there are no coatoms.

Ordered sets are relational structures, i.e. they are sets endowed with some

fundamental relations, as opposed to algebras which are sets endowed with
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some fundamental operations. Under certain circumstances however, an order
relation may be described by a (binary) operation on the same carrier set, and
vice versa. The key fact is that the supremum of any two elements of an ordered
set is uniquely determined whenever it exists, and so is the infimum. We capture

this situation in the following definition.

Definition 3.1.12 An ordered set S =(95, <) is called a Sup —semilattice iff
Sup{w,y} exists for all z,y € S; it is called an Inf —semilattice iff Inf<{x,y}
exists for all x,y € S. An ordered set that is both a Sup —semilattice and an

Inf —semilattice is called a lattice.

Note that in a Sup —semilattice S the supremum of any finite, non—empty
subset U C S exists (why?), and so does the infimum of any finite, non—empty

subset in an Inf —semilattice.

Example 3.1.13 Let U # ) be any set and pick a nonempty proper subset
Up of U. Define S :={Z CU; Uy Z Z}. The ordered set (S,C) is an Inf—
semilattice but not a Sup —semilattice, and we get Inf {Z1, Z2} = Z1NZ. Under
the dual order (7, < Zy iff Z1 O Z5) S will be a Sup —semilattice but not an
Inf —semilattice. (Exercise: What is the corresponding semilattice operation in

this case?)

Clearly, suprema and infima are closely connected, and thus, in an ordered

set where they both exist, we observe the following properties.

Lemma 3.1.14 For all x,y,

Sup {z, Inf {z,y}}
Inf {z, Sup {z,y}}

z; and

I
8

Proof. Exercise. [ ]

Example 3.1.15
1. For the divisibility order 6 on N (Example [), Sup and Inf of

any finite subset of N exist, since Inf {m,n} :g.c.dﬂ of m and n resp.
Sup {m,n} = l.c.mﬂ of m and n. (Exercise: Verify this!)

2. (cf. Example A special type of lattice is given by a collection
L of subsets of some set X such that U,V € £ implies that U NV and
U UV both are in £. The suprema and infima in the lattice resulting

2g.c.d. of m and n: greatest common divisor of m and n, i.e. the greatest number d such
that both m/d and n/d are integers.

3l.c.m. of m and n: lowest common multiple of m and m, i.e. the lowest number d > 0
such that both d/m and d/n are integers.
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from ordering L by set—inclusion coincide, in this case, with set union and

intersection.

3. (See also [9.3.4]) To prevent you from forming the impression that set—
union and —intersection are the only examples of lattice—suprema and —
infima, consider the following examples: If X is a group (ring, vector
space, topological space, boolean algebra), then the collection of sub—
groups (sub-rings, linear sub—spaces, closed sub—spaces, sub—algebras) or-
dered by C is a lattice. The infimum corresponds with set—intersection,
again, whereas the supremum is a little bit more complicated than mere
set—union, since e.g. the union of two subgroups need not again be a
sub—group; rather can Sup of two sub—groups be shown to be exactly
the smallest sub—group containing the two sub—groups. If we look at this
from another angle this is exactly the sub—group generated by (sub-ring
generated by, linear hull of, topological closure of, sub—algebra generated
by) the set—union of the sub—groups (sub-rings, linear sub—spaces, closed

sub—spaces, sub—algebras).

A important tool for working with orders are (Hasse) diagrams, especially
for finite orders or finite parts of arbitrary orders. Given such an order P, its
diagram consists of of small circles in the plane, representing the elements of
P, and straight line segments, representing the covering relation in P. More
precisely, the circles representing u,v € P are joined by a line segment exactly
if 4 < v, and in this case the circle representing v must be strictly above the
circle representing u (in the natural orientation of the plane). Moreover, no

other circles are incident with this line segment.

Example 3.1.16 Here are some examples:

IR

2 N5 M3 B3
2 is the smallest non—trivial ordered set. It has 2 elements and clearly is a

lattice (as are the other three examples depicted). N5 and M3 are lattices which
will be of special interest in the context of modularity and distributivity (cf.
Section . Finally, B3 is also known as the boolean algebra with 3 atoms,
which hints at the fact that it is another kind of algebraic structure; simple

calculations show that it is also a lattice.



30 CHAPTER 3. ORDERED SETS

3.2 Complete Lattices and Closure Operators

Completeness is another important property lattices sometimes have. It is not
an algebraic property in the sense that, although it is formalized in the language
of the lattice’s order—relation, it is not expressible using the algebraic aspect
(Sup and Inf) of the lattices. Moreover, completeness is not expressible by

means of first—order logic.

Definition 3.2.1 A lattice L =(L, <) is complete iff Sup. A and Inf< A exist
in L for any subset A C L.

In particular, every complete lattice L has a least element L1 and a greatest

element Ty . (Exercise: Why?)

Example 3.2.2

1. Every finite lattice is a complete lattice.

2. While the set R of real numbers (with the usual order) is a lattice, it is not
a complete lattice. However, the extended reals R = R U {—00, +oo} with
—00 < < +oo for all z € R and the natural order within R constitute a

complete lattice.

3. The power set P(X) of any set X is easily seen to be a complete lattice
under the order of set—inclusion. (Exercise: Prove this by finding the

appropriate Sup and Inf.)

4. (See Example [3.1.3]l)) N with the order of divisibility is a complete lattice.

Again, as an exercise, find Sup and Inf appropriate for any subset.

In spite of being defined in terms of order exclusively, completeness is pre-
served by lattice isomorphisms, thus it is a property of algebras in the sense
that preserving the algebraic structure of a lattice ensures the preservance of
completeness as well.

The task of recognizing complete lattices is cut in half by the following result.

Proposition 3.2.3 For an order L =(L, <), thwe following are equivalent:

(i) L is a complete lattice;
(ii) for any subset S C L, Inf< S exists in L;

(iii) for any subset S C L, SupS exists in L.
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Proof. Clearly, any complete lattice satisfies (ii) and (iii). Conversely, an
ordered set satisfying (ii) and (iii) is clearly a complete lattice.

Now assume (ii) and take any S C L. Let U :={u € L; u > s for all s € S}.
Then Inf U = Sup S in L, so the arbitrary subset S has a supremum in L and
therefore L satisfies (iii). Hence (ii) implies (iii), hence by the above observation
(ii) implies (i).

The dual argument works to show that (iii) implies (i). |

Complete lattices arise in many important situations as special collections

of subsets of some base set X. This fact motivates the following definition.

Definition 3.2.4 A collection ¢ C P(X) of subsets of a set X is a closure
system (on X) iff S € C for any subcollection S C C.

Note that X € C for any closure system C on X since X coincides with the
set intersection of the empty subcollection of C. As an immediate consequence of
Proposition|3.2.3] every closure system C is a complete lattice under set inclusion
as order relation. The infimum in (C, C) coincides with set—intersection, but the
supremum is generally different from set—union, e.g. Sup {C1,Cs} in C is given
by N {C € C; C; UCy C C} which may properly contain C7 U Cy as a subset.

Examples of closure systems can be found throughout the whole field of
mathematics, e.g. wherever we consider sub—constructs (sub—groups, sub-rings,
closed sub-spaces, linear sub—spaces, sub—algebras etc.) under the aspect of
finding the smallest sub—construct which contains a given subset of the whole.

The next definition provides an alternative way to describe closure systems.

Definition 3.2.5 Let X be any set. A map C : P(X) — P(X) is a closure
operator on X iff for any U,V C X we have

(i) U C C(U) (C is extensive),
(ii) C(C(U)) =C(U) (C is idempotent) and
(ili) U CV implies C(U) C C(V) (C is monotonic).

span X, the linear sub—space spanned (generated) by some subset X of some
vector space V could serve as a natural example.

While closure systems emphasize the static aspect (closure systems consid-
ered as the collection of the final states of some process), closure operators are
the dynamical counterpart (the process itself). As we shall see, they present
different sides of the same coin:

Given a closure system C on X, define the function C; : P(X) — P(X) by

Ce(U):=({Aec;UC A}
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for any U C X. Conversely, given a closure operator C, define
Coc={ACX; A=C(A)}.

It is not difficult to show that C; is a closure operator and that C¢ is a closure
system; moreover

Ce. =C and Cco, =C.

(Exercise: Work out detailed proofs for these statements!).

Although complete lattices from the point of view of their definition do not
differ much from lattices, the omission of the finiteness—condition for subsets
for which suprema and infima are to exist is a fundamental difference from the
point of view of first—order logic. There is no set ¥ of L—sentences — for an
appropriate language £ — such that an L—structure is a complete lattice if and
only if it is a model of ¥. However, for the moment we are not in the position
to prove this, since we would use semantical arguments not yet introduced. The

complete proof will be given in Proposition



Chapter 4

First Steps in Model
Theory

In this chapter, we provide a overview of the basic concepts you are bound to

come across when studying Model Theory.

4.1 Introducing Mod and Th

This section is intended to provide some introductory remarks and definitions
that will be central in any aspect of Model Theory as it will be presented in the
following chapters.

The starting point of model theory, if there is any, is best located in the
vicinity of the two operators Mod and Th. Since model theory basically con-
cerns algebraic properties common to classes of models of formal theories, the
transition from syntax to semantics has to be a fixed and smooth one. The
notion of satisfaction or validity in a model is too detailed and clumsy for such
a purpose. There must be ways of describing satisfaction in the context of
whole sets of sentences and classes of models. This leads to the definition of the
two class—operators Mod and Th. Let us begin by fixing some nomenclature

intended to make our lives a lot easier.
Definition 4.1.1 For a formal language £, define the class StrL by
StrL := {A; A is an L-structure} .

Note that StrL is a proper clas{] and may be regarded as the semantical

IThus generally, Str £ is not a set. This exemplifies a phenomenon occurring throughout
mathematics, when dealing with the structure of sets is the focus of concern and not the

33
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counterpart to Sen L.
Working with sets of sentences and classes of models, questions such as the

following arise:

e Does a given set of sentences describe a class of structures that shows nice

semantical / categorical properties?

e Does a given class of models have a nice description in a language of

first—order logic?

Thus, what we are looking for are semantical / syntactical counterparts of
notions defined strictly in the syntactical / semantical realm respectively. We
are therefore in need of some means to interconnect the two realms of syntax
and semantics, a task that is now fulfilled using the two operators Mod and Th.

Note that the following definition consists of mutually dual parts:

Definition 4.1.2 Let K C Str £ (a subclass!) and X C Sen L.
(i) Th(K) :={c € Sen L ; A |= ¢ for every A € K} (“theory of K”)
(ii) Mod(X) :={A e StrL; A= o for every o € £} (“model class of ¥7)

Thus, Th assigns to a class K the set of sentences valid in all structures in
K, while Mod assigns to a set of sentences the class of structures in which all

the sentences in ¥ are valid. We note thatf]

Th: P(StrL) — P(SenL)
Mod: P(Senfl) — P(StrL)

Sen L Str L
~ Th
ThK K
syntax semantics
b Mod 2
Mod _

To keep notation legible and bracketing reasonable we simply write ThK
and Mod ¥ instead of the more accurate Th(K) and Mod(X).

Exercise 4.1.3 Prove the following equivalences:

AeModS iff ALY
o€ Th{A} iff Ao

elements of the sets. The lack of information on the side of the elements allows in principle

to construct the class of all sets as a derivative of the class of all L—structure, thus the latter

being a set would imply an antinomy along the line of Russell’s Paradox; see also Section 77.
2NB: (Th,Mod) is what algebraists call a Galois—connection.
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There are several simplifications you are bound to come across in the context
of Mod and Th: First, brackets and the symbol o for the operational product
are often dropped. Thus, for ¥ C Sen L, o € Sen £, K C Str £ and A € Str L,

we regard expressions like
ThModK, ThModa, ModThK, ModThA
as equally meaningful as their clumsy, full-blown equivalents
ThoMod(K), ThoMod({a}), ModoTh(K), ModoTh({A}),

although the latter notations are the more exact. Since unique reading is ensured
with the shortened and more readable forms, we will stick to these in further

developments.

Lemma 4.1.4 For ¥ C Sen £ and K C Str L,

(i) XC ThMod X and K C Mod ThK.

(i) Mod and Th are antimonotonic, i.e.
If 21 Q 22, then Mod 21 2 Mod 22.
If Kl Q KQ, then Th Kl :_> Th Kg.

(iii) ThMod ThK = ThK and Mod ThMod ¥ = Mod X.
Proof.

(i) o € ¥ implies A |= o for every A € Mod X, thus 0 € Th Mod ¥. Similarly
for K.

(ii) A € Mod X5 implies A |= X9, thus, since ¥; C Yo, we have A = X4, i.e.
A € Mod X;. Similarly for Ky, Ks.

(iii) K € Mod ThK by (i). Thus ThK D ThMod ThK, using (ii). On the
other hand, using (i) we have ThMod ThK 2 ThK. Putting it all to-
gether, we have ThMod ThK = ThK. Similarly for the second claim.

Exercise 4.1.5 Bridge the gaps in the proof to Lemma [£.1.4]

Lemma implies that both Mod Th and Th Mod are closure operators
(cf. Definition [3.2.5). (To find a proof for this makes another exercise.) As
always in the context of closure operators, the “closed entities” deserve some

special attention:
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Definition 4.1.6 Let ¥ C Sen £ and K C Str £. We call

(i) ¥ a theory iff ¥ = ThMod X.

(ii) K a elementary class iff K = Mod ThK.

The use of “elementary” instead of “elementary class” is common practice.
Considering the products Th Mod and Mod Th as operators on Sen £ and
Str L respectively, we see that theories and elementary classes are the respective

fixed points of these operators.

Exercise 4.1.7 What about () and Str L7 Are those elementary classes? And

what about () and Sen £ as sets of L-sentences? Are they theories?

To subsequently motivate these definitions, we observe that being a theory
means being exactly the set of sentences that hold in all structures of some
appropriate class of L—structures, while being elementary is equivalent to being

the class of all models of some set of sentences:

Corollary 4.1.8 For X C Sen £ and K C Str L,
(i) Y is a theory iff X =ThK for some K C Str L.

(i) Kis elementary iff K= ModX for some ¥ C Sen L.

Exercise 4.1.9 Prove corollary

Some authors use the word axiomatizable instead of elementary to em-
phasize the fact that, for an elementary class K, there is a set ¥ of sentences
axiomatizing exactly this class K. The elements of ¥ are called axioms, not
to be confused with the axioms of first—order logic upon which our notion of
formal deduction is based.

Clearly, elementary classes are a widespread phenomenon and the reader will
have come across a few examples, maybe even without being aware of it, e.g.
the class of all sets, the class of all groups, rings, fields etc. By providing the
respective axioms we implicitely prove (or are being told) that these classes are
indeed elementary. (Exercise: What would be axioms appropriate for the class
of all set?)

The task of providing a set of axioms for some given class is, from the
point of view of Model Theory, secondary to the task of finding means of char-
acterizing classes as being or failing to be elementary without falling back to
syntactic notions. Thus we will, in later sections, successfully hunt for alge-
braic notions to tell elementary classes from the ones which are not. Since we
are mainly dealing with model-theoretic aspects, we therefore prefer the termi-

nology “elementary” to “axiomatizable”. Nevertheless, calling non—elementary
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classes non—axiomatizable puts the focus on the fact that such classes evade
description by the means of first—order logic.

For the time being, given L—structures A and B, the only way to find dis-
tinguishing properties of these two structures is via the formal language L, i.e.
some formulae that are satisfied in only one of the two structures. If, by means
of the language, the two structures cannot be told from each other, we will say

that they are elementary equivalent:

Definition 4.1.10 L-structures A and B are called elementary equivalent
iff Th A = Th B; notation A = B.

The situation compares to other fields of math, e.g. algebra where catego-
rizing groups is only of interest up to the level of isomorphisms, i.e. isomor-
phic groups are regarded as identical. In the context of first—order logic, the
resolution is as grainy as the notion of elementary equivalence, so elementary
equivalent structures are one and the same where satisfaction of formulae is
concerned, since they satisfy the same L—sentences.

The following observation is almost too obvious to mention:
Lemma 4.1.11 If A, B € Str £, then
A=Biff [A|E ¢ iff B ¢ for all ¢ € Sen L].

The proof is left as an exercise.

Elementary equivalence is “language depending”, as is exemplified by the
fact that Q and R are elementary equivalent as ordered sets, but not as fields.
(A proof for this is yet beyond our facilities; the necessary tools will be provided
below.) Still there is no risk of confusion since, whenever necessary, we will
always make clear which language is considered

The operators Mod and Th are mutually dual “interfaces” between syntax
and semantics. Notions defined for one realm are “translated” via these opera-
tors to the other realm. E.g. elementary equivalence is clearly rooted in syntax,
and we may wonder in what form it is expressed using semantic notions. We
will come back to this in Section B3

For a class of L—structures being an elementary class means being axiom-
atizable, i.e. being definable by a set of L—formulae. Since looking for an
appropriate set of formulae may take forever, we start looking for other criteria
to decide whether we need not even start the search in the first place. Thereby
we try to stay in the semantical realm rather than using syntax. This will be
the subject of Chapters [7] and

The following is obvious:
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Lemma 4.1.12 Every elementary class K is closed under elementary equiv-
alence, i.e.
If Ac K and B= A, then B € K.

We leave the proof as an easy exercise to get used to dealing with the notions
involved.
Note that the converse of Lemma [4.1.12| is not true, as we shall later see

examples of classes of L—structures that are not elementary, but are still closed

under =(cf. Examples and [8.1.9)) .

4.2 Expanding and Restricting Languages

Expanding languages is a rather simple concept that poses no real problems
of understanding, yet it is of importance to model theoretic constructions. In
principle, we could expand a language £ to another language £ by adding new
relation—, function— or constant—symbols (or some of all, for that). So (we will
not elaborate a detailed definition here since we are lacking a precise definition
of a formal language to begin with) we will say that £ expands L if £ contains
all non—logical symbols of £ (plus some more, eventually). Consequently, £ is
called a sub—language of L.

In practice, the only kind of expansion of a language we will regularly use is
expansion by constants. Thus an expansion £ of £ and £ itself will comprise the
same relation— and function-symbols, but £ contains constant symbols that are
not present in £. Since our main usage of languages is to formalize structures,
you could say that an expansion by constant—symbols provides the larger vocab-
ulary by having names for elements that were “nameless” in the sub—language.

Expansion of a language carries over to most of the syntactical concepts
in the following sense: Suppose £ expands £. Some tedious but instructing

experiences in Noetherian Induction show that
e TmLCTmL
e Fml £ C Fml L

e Sen L CSenl

Clearly, any £-structure A can be made to a £-structure, simply by “for-
getting” about the interpretations of the non—logical symbols added when form-
ing the expansion £. Almost with the same directness we may “expand” any
L-structure to a £-structure, this time by simply adding the missing interpre-

tations by arbitrary definitions.
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Example 4.2.1 If L is the language of groups consisting of a binary function—
symbol 4+ and a constant-symbol 0, and £; is language of rings (and fields) con-
sisting of two binary function—symbol + and - and two constant—symbols 0 and
1, then £; is an expansion of Ly. Every £;—structure A is also a Ly—structure,
as is exemplified by any ring (R, +, -, 0, 1) carrying also the structure of a group
(R, +,0), the “group—aspect” resulting from simply forgetting about the inter-
pretations - and 1 of the second function— and constant—symbol, respectively.
Conversely, any group (i.e. any Lo—structure) can be expanded to a structure
for the expanded language £; by “making up” arbitrary interpretations for the
new non—logical symbols - and 1. Nobody expects such arbitrary interpretations

to define a ring, but they do expand the group to a Li—structure.

Arbitrary adaptations of course are not the real source of inspiration for the
notion of expansion, quite on the contrary, the constructions you are most likely
to encounter while dwelling the realms of model theory stem from the syntactical

approach of adding constant—symbols for all elements of some structure:

Definition 4.2.2 Let £ be a formal language.

1. If C is a set of constant-symbols not already in £, then Lo will denote
the expansion of £ resulting from adding the constant—symbols ¢ € C to

L.

2. If X is any set, then Lx will denote the expansion of L resulting from

adding, for every element x € X, a new constant—symbol ¢, to L.

3. If Ais a L-structure, then L4 := L) 4.

For [3] the L-structure A implicitly carries the natural interpretation which
makes it into a £ 4-structure A by defining simply ¢ := a for any a € |A|. To
symbolize this, we will use the notation A := (A, cq)ae|a)-

We add to our list of consequences of expansions
e ThACThA

Taking one step back, one might recall a remark we made concerning term—
structures in the absence of constant—symbols, and one might even start to
wonder what CT(L_4)/ Th A looks like ...

The title of this section not only mentions expansion but also restriction of
languages, the latter of which we still owe you any word about.

Let’s look at a set ¥ of L—sentences for some language £. If £ is infinite in
the sense that £ has infinitely many non-logical symbols, while ¥ is finite, we

may with all the right in the world say that most symbols in the language are a
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waste of time, they will never be used while we deal with ¥. So we might just
as well, instead of carrying the full weight of L, restrict our attention to the

relevant part of £, i.e. the symbols actually occurring in X. We thus define

Definition 4.2.3 If £ is a formal language, ¢ € FmlL and ¥ C Fml L, we
denote by L(¢) the sub-language of £ which comprises exactly the constant—,
relation— and function—symbols occurring in ¢, and consequently by £(X) the
sub-language of £ consisting exactly of the non—logical-symbols occurring in

some formula in 2.

Par abus de language we could write L(X) = |J_.x £(¢), implying the union

>
is “intelligent” in that it joins not the mere languagis but their sets of constant—,
relation— and function—symbols, respectively.

It is noteworthy that, by syntactical considerations, we can prove that if
Y F p with ¢ € L(X), then F ¢. The prove of this uses induction on the length
of the deduction of ¢ from ¥ and is a nice exercise to refresh the technical skills
for syntax matters.

Also, note that we did not discard £ in the definition of £(¢) entirely for the
sole reason of ontological soundness, i.e. we need our formula to be a formula
built from symbols that come from some collection accessible to us, and this
collection we call £. But the more natural way is, of course, to just have a
look at a formula and collect the non-logical symbols, counting on our instinct
for math to be able to tell function— from relation— from constant—symbols and
these again from logical connectives. Mostly you will not come upon “language—

declarations” before doing some math.

4.3 Size Does Matter

In this section, we are going to take a closer look at a construction used mostly to
prove the correctness theorem of first—order logic. Put in “everyday’s math lan-
guage” | proves for Godels correctness theorem mostly encapsulate the construc-
tion of some model built from syntactical notions, the so—called term—structure,
by taking the set of variable—free terms of the given formal language £ and di-
viding this set into equivalence classes under the congruence relation of “being
provably equal”. The main problem encountered when doing so is to ensure
that there really are any variable—free terms, and that there are enough of them
to provide examples for any existential sentence formally deducible.

Maybe you recall, from predicate—calculus, that every consistent set of £—
formulae may be extended to a set of L —formulae which is maximal-consistent

and has witnesses. Just in case you do not and for the sake of completeness, we
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sketch the process of providing such an expansion of £ and the set of formulae,
and moreover outline the construction of the resulting term-structure in the
expanded language.

But since we do not want to bother to give a lecture on notions introduced
somewhere else in much more accuracy and with better the motivational frame-
work, we rather try to slightly generalize the result and bend the main focus
towards the goals of model theory.

Since the Lowenheim—Skolem theorems introduced in the next sections will
deal with the existence of models with universes of desired cardinalities, we first
have a look at how the cardinality of a language translates to the cardinalities

of certain sets of syntactical constructs:

Definition 4.3.1 For a formal language £, we let card £ denote the cardinality
of the set of non-logical symbols of £, i.e. the cardinality of the (disjoint) union
of the sets of function—, relation— and constant —symbols of £. Especially, we
say that £ is finite (infinite) if card £ is finite (infinite), and similarly for £
being (un)countableﬂ

For any set X, let X* denote the set of all finite families of elements of (or

strings over X).

Lemma 4.3.2 For any infinite cardinal x, card X < « iff card X* < k. More-

over, if X is infinite, then card X* = card X.

Proof. (Using Set Theory:) If  is an infinite cardinal, then the following holds:
e k" =k for alln € N;
o vxr =k forall v <k.

Now, if card X < k, then

card(X™*) = anrd(X")
neN

= z card X = Ny * card X
neN
< Ny*k =K.

Also, since card X* > card X, the other direction follows easily. [

Lemma 4.3.3 Let £ be a formal language. Then

3The notion of countability will — in the course of this paper — be used to stand for
countable or finite. So, unlike some other authors in the area of logic or Set Theory, for a
set to be countable there has to exist an injective mapping from the set to N which does not
necessarily have to be surjective!
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1. card Tm £ < card Fml £ = card Sen L;
2. If £ is countable, then so are Tm £, Fml £ and Sen £;
3. if card £ is infinite, then card Tm £ < card £ = card Fml Z;

4. for any set X, if card L < card X, then cardTm Ly = cardFmlL =
card X.

Proof.

1. This is an easy exercise: find 1-1-functions from Tm £ into Fml £, from
Fml £ into Sen £ and from Sen £ into Fml L.

2. Since every variable is a term, Tm £ is infinite.

]

Next we like to introduce the construction by Skolem mentioned in this

section’s title. The main idea behind these Skolem—functions is that pure exis-

tential sentences must be verified by an example already in the set of sentences

under consideration, thus ensuring that we are equipped with enough constant
—symbols to construct the desired syntactical models.

First we need some auxiliary syntactical notions:

Definition 4.3.4 A L—formula ¢ is called a property(—formula) if ¢ has at
most one free variable. The set of all L—properties will be denoted by Prop L.

If ¢ is a property formula with free variable x, then we define, for any £-—
structure A, the extension of ¢ in A, denoted by |¢| 4, by

lpla :={a € |A]; A ¢[h(?)] for any valuation h into A} .

So the extension of a property is simply the set of all elements which “have
this property”. Note that for properties not having any free variables, the

extension in a structure is either empty or the whole universe.

Definition 4.3.5 A set of sentences ¥ C Fml L is said to have witnesses if
for every property ¢ € Prop L, there is a constant—symbol ¢ in £ such that
Jzp — ¢ (z/c) € 2.

Lemma 4.3.6 Let ¥y C 31 C ¥y C ... be a infinite ascending chain of de-
ductively closed, consistent sets of L—sentences. Then UneN >, is deductively

closed and consistent.
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Proof. If ¥’ := |J,cy En were inconsistent, then (by compactness) we would
find an inconsistent finite subset {¢;,...,¢,}C ¥’ and thus %, ,...,%; with
{p1,-- s, }C X, U...UX, . But then ¥; U...UY; =X, would be incon-
sistent for some m, contradicting the assumptions.

3 is deductively closed since, again by compactness, if ¥/ - ¢, then there
is again a finite subset {¢q,...,9,} with {¢1,..., ¢, } ¢, so again we find
¥, F @ for some m, but then, since %,,, is deductively closed, o € ¥,,, CX'. =

Lemma 4.3.7 If ¥ C Sen £, then
Y :=3U{3zp — ¢ (x/cy); ¢ € Prop L}

is consistent.

Proof. This is proved in most Textbooks dealing with the proof of completeness
of first—order logic via Henkin—style structures. To get the idea, please consult
the literature. ]

Most of the proof of the following theorem has been done in ..., but for the
sake of self-completeness and the cardinality-related observation in part (iv),

we are going to give a proof, omitting certain tedious details.

Theorem 4.3.8 If £ is a formal language and ¥ C Sen L is consistent, then

there is an extension £’ of £ and a set ¥’ of £'-sentences such that
(i) 2 C ¥
(ii) ¥’ has witnesses;
(iii) X' is consistent and deductively closed,;
(iv) card £ = max{Rg, card L}.

Proof. Define, for n € N, formal languages £,, expanding £ and ¥,, C Sen L,,
as follows: Set Ly := £ and ¥y := ¥. Now suppose we are given £; and %;.
Then we set

£i+1 = <£70¢>@€Prop£i

and
Yit1 = Ded(3;U {3zp — ¢ (x/c,) ; ¢ € Prop L;}),

where it is understood that the new constants ¢, are pairwise distinct. Finally,
we set L' :=J, ey Ln and X' =, oy Zn-

Then clearly (i) holds. As for (ii), if ¢ € Prop L', then ¢ € Prop £; for some
i € N, and thus Jzp — ¢ (z/c,) € X441 C X', (iii) follows directly from Lemma
4.5.0
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To show (iv), we first note that if £ is countable, then Fml £ is countable
and so all the expansions £; of £ are countable. But then £’ is the countable
union of countable sets and thus, by Set Theory, £’ is countable. On the other
hand, if card £ > Ry, then card £; = card L for all expansions £; of £, and again
set theories tells us that card £ = card L. ]

Theorem 4.3.9 If £ is any formal language and ¥ C Sen £ is consistent, then
there is a model A of ¥ with card | A| < max{R, card L}.

Proof. Let £ be a formal language and ¥ C Sen £ consistent. By [1.3.8] we
find a language £’ O L and a consistent theory ¥’ C Sen £’ such that £’ has
witnesses. Moreover, since ¥/ is consistent, we have Mod ¥/ # () and thus, for
some A € ModY’, ¥ C ThA. So w.l.o.g we assume that ¥’ is complete (and
hence maximal consistent).

Now, by correctness, CT(£)" /%' is a model of ¥/, and

/

card | CT(L) /¥'| < card Tm L' = card L.

]
So we see that, unless we're dealing with a very rich language with lots of
names and symbols for functions and relations, we may find models for consistent

sets of sentences that are rather small:

Corollary 4.3.10 If £ is finite or countable, then every consistent set of £—

sentences has a countable (finite or infinite) model.

So we see that there are countable models of the theory of the complex or
real numbers considered as fields. What’s more of a surprise, the above corollary
implies the existence of a countable model of ZFC Set Theory, a theory dealing
with cardinals as mind-bogglingly uncountable as Nggo, thus such a countable
model must have an element having exactly the same first—order properties
provable for Ng:o in ZFC!

Nevertheless, you might be left with the feeling of a somewhat empty stom-
ach, since what we did is to build a model made up from purely syntactical con-
structs. So our knowledge about this model is not deeper than our knowledge
of the syntax of first-order logic, and there we have to live with the boundaries
set by incompleteness/undecidability. What would (even if only mentally) more
reassuring is the construction of a smaller model, given a structure which is, in
the light of the above results, fitted with a universe full of redundant entities.
By reducing this model to its necessary small part, we could probably have a

better grasp of its properties by using (non—first—order) results known about
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the bigger structure. This is exactly what the Downward Lowenheim—Skolem

Theorem is all about, and we will deal with it right now.

4.4 Meet the Morphisms!

When considering classes of mathematical constructs sharing some general struc-
tural common ground, it is common mathematical practice to have a closer look
at mappings between them preserving these properties. These mappings are
ofterﬁ called (homo—)morphisms. We are now looking at such mappings in the
context of model-theory, which means the properties to be preserved are given

by first—order logic, i.e. the interpretations of the symbols:

Definition 4.4.1 Let A, B be L-structures. A map 7 : |A] — |B| is a £—

homomorphism from A into B iff
e for all relation-symbols R; and all a1, ...,axu) € |A],
(ag,... 7a/\(i)>€ RZ'4 implies (n(a1), ... 777(a/\(i))>€ R?§
e for all function-symbols f; and all ay,...,a,) € |A],
77(fj4(a1,--~7au(j)) = ff(n(al)w-wn(%(j))ﬁ

e for all constant—symbols cg,

n(cil) = cfl.

A is called the source (or domain) and B the target (or co-domain) of 7.
If n is surjective, B is called a homomorphic image of A. We write hom 4B

for the set of all homomorphisms from A into B.

To simplify the notation, we introduce the following abbreviation: If X, Y
and S are sets and n : X — Y, then the function 7% : X — Y9 is defined
by

13 (@5 s € 5)) ==(n(zs); s €5) .

Especially, if n € N,

77(”) (@1, oy ) =(n(z1), ..., n(xn)),

4 At least this is true if algebraic structures are involved. Of course continuous functions
fall in this category also, as do order—preserving functions.
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where the notation
nxnx...xn forn™
n factors
is equally popular.

As simple examples we see, for any L—structure A, that the identity—map
id4 defined by id4(a) = a for all a € |A|, is a homomorphism. Moreover,
it is easy to see that the composition 77 o p of two homomorphism is again a
homomorphism. Another example involves the notion of the direct product of
structures, since then we see that the projections are homomorphisms as well.
(This will become clear when products will actually be needed.)

Homomorphic behavior of a map, as defined on functions and constants,

translates to terms in general:

Lemma 4.4.2 If A, B are L-structures andn : A — Bis a L~homomorphism,

then for any L—term ¢t and any valuation A into A,

n(tA[h]) = t®[n o h].

{vo, v2,v2,...}

n

Proof. By induction on t.

e If ¢t = x is a variable, then

n(tA[h) = ()
noh(z) = tB[noh].

e If t = ¢ is a constant—symbol, then

n(th]) = n(e)
= o =tloh]

since valuations are negligible for constant—symbols.
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o Ift = f(t1,...,t,()) for terms t1,...,%,¢;, then
Nt R) = (R g D))
= PR, -ty D)
= fP(Fmoh],...,th; moh]) (by ind. hyp.)

]

Characterizing the homomorphisms according to their universal behavior

is the next step we take. For example, looking at groups, we call the injec-
tive homomorphisms monomorphisms and surjective homomorphisms epimor-
phisms. Now being injective or surjective is not exactly a universal property,
since it can be verified in a rather local setting involving but the domain and
the co-domain of the homomorphism. But there are indeed more general ways

of expressing the central ideas:

Definition 4.4.3 Let A and B be L-structuresandn : A — B a £L-homomorphism.

1. nis called a L—monomorphism (or mono) if, for any L-structure C and

any py,py ¢ C — A,

10 py =10 py implies p; = p,.

P1
C— A—B

P2
2. n is called a L—epimorphism (or epi) if, for any L-structure C and any

p1,p2 + B—C,

p1 o1 = py o1 implies py = p,.

P1
A—> B —5C

P2

3. n is called a L—isomorphism (or iso) if there isa p : B — A such that

pon=idy and nop=idg.



48 CHAPTER 4. FIRST STEPS IN MODEL THEORY

4. 7 is called a (isomorphic) L—embedding if 5 is an isomorphism onto a

substructure of B.

A and B are called isomorphic, notation A 22 3, if there is a L—isomorphism
n : A— B. Ais called (isomorphically) embeddable into 5 if there is an
embedding n : A — B.

There might be some confusion arising since in classical algebra, e.g. group—
monomorphisms are defined to be injective homomorphisms. Since we are in-
clined to take a somewhat more universal attitude, we used the universal (or
categorical) properties as defining statements. So for the present lecture, we
distinguish between mono and 1-1, between epi and surjective. Of course there

are connections:

Remark 4.4.4 1. injective homomorphisms are monos,
2. surjective homomorphisms are epis,
3. isos are injective and surjective.

But be aware of the fact that for a map to be an L-isomorphism, it needs
more than just being injective and surjective. As an exercise, study the (simple)
setting for £ being the language having < as only non—logical symbol, and con-
sider the two L-structures A := ({(0,1),(1,0)}, <) and B := ({(0,0), (1,1)}, <),

where in both cases < is the point—wise ordering. It will present no real diffi-
culty to find a £-homomorphism that is both injective and surjective, but still
A and B are not isomorphic.

The following provides simple paraphrasing of the conditions for a map to

be an isomorphism:

Lemma 4.4.5 For a homomorphism n : A — B, the following are equivalent:

(i) n is a L-isomorphism;

lis a £L~homomorphism;

(ii) 7 is injective and surjective and 7~
(iii) n is injective and surjective and
RMay, ..., axp) iff RE (n(aq), ..., n(axq)))

for all relation-symbols R; of £ and all a1,...,axq) € |Al.

Proof. Exercise. ]
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In later chapters we will be concerned with algebras, which are roughly
speaking structures without relations. It is not hard to see that in this setting,

isos correspond exactly to bijective homomorphisms.

Isomorphic structures can be converted one into the other by a “renaming” of
their elements, provided by the isomorphism considered. For any isomorphism

1

n : A — B the inverse map n~' is an isomorphism from B to A (Exercise:

Prove this).

Throughout mathematical fields, finding an isomorphism between two struc-
tures is a way of showing that within the theory at hand, we cannot distinguish
these two structures, they look exactly the same, which serves as a motivation
to drop the distinction between them and actually regarding them as one and
the same. This is what is often expressed by the idiom “unique up to isomor-
phism”, as in “up to isomorphism, there is exactly one group of 7 elements”.
The general setting we are concerned with is no different, only are we not con-
tent with having found a 1-1 and onto homomorphism as e.g. group theorists
have the advantage of, we must be a little more careful (while staying even more

universal).

Now that we know about isomorphisms, it’s time to look at some conse-
quences accompanying this notion. If isomorphic should have any prospect of
standing for “indistinguishable”, then surely first—order logic is not allowed to
tell isomorphic structures apart. In other words, isomorphisms should not only
preserve algebraic properties but first—order—properties as well. So clearly the

following makes a lot of sense:

Theorem 4.4.6 For any two L—structures A and B,
If A= B, then A= B.

Proof. First, we note that for any valuation h4 into A, 1o h 4 is a valuation
into B and, conversely, for any valuation hp into B, there is a valuation h 4 into
A with hg =no hy.

Next we realize that, by for any L—term ¢ and for any two valuations
h4 into A and hgp into B,

B o hal = n(t*[ha])

and
A" o hi] =0~ (t°[hs))

giving us a bijective correspondence on terms.
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Stepping over to L—formulae, we have to show that, for all ¢ € Fml £ and
all valuations h 4, hg into A, B respectively,

B E= p[noha) iff AE plhal.

You will not be too surprised to hear that this can be done via structural

induction over ¢. So we have to consider the following cases:

o If p =t) =ty for L—terms t1, o, then for any valuation h into A we have

AE el iff (] = t3'[h]
iff  n(t{[h]) = n(t3'[h]) (nis 1-1 and onto)
iff 5[y o h] = t5[n o h] (by the above)
ifft BE[noh).

The case where ¢ = R;(t1,...,t,) is left as an exercise.

If ¢ = =) for a L—formula ¥, then for any valuation h into A we have
Al plp] it AR IR
iff B} d[noh] (by ind. hyp.)
ifft Bl [noh).

Again the case p = ¥ A1) is left as an exercise to the reader.

If o = Vo for a variable x and a L—formula ¢, then for any valuation h

into A we have

AEolh] iff  AEIR(E)] forall a € | A
it A ﬁ[h( )] for all b € |B|
ifft BEno (h(n ‘f(b)))] for all b € |B]
iff BEJI[(noh)(])] for all b e B
if BEgnoh].

]

To hope for the converse to hold as well is being over—optimistic and not jus-
tified, as later examples will show. So in general, elementary equivalent struc-
tures need not be isomorphic; our first-order languages lack a mechanism to
express certain properties which are preserved by isomorphisms. If we carefully

study the definition of isomorphisms, we might even spot the crucial point where
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formal languages for first—order logic fail to provide the necessary constraints:
Since relation—, function— and constant—-symbols are syntactical elements, ho-
momorphic behavior is implemented in first—order languages. So we only might
get in trouble where the existence of a unique inverse morphism is demanded, or
to regard it in a more local setting, with bijectivity. Still, if the structures under
consideration are finite, there will be no problem, but with infinite structures,
elementary equivalence will prove to be properly weaker than isomorphism.
For the rest of this section, we need an auxiliary notion which will help us to
capture L-isomorphisms for the finite case using the first—order language £. For
any n € N we are going to define a set of L—formulae as follows: I'*,, contains

exactly the following formulae

® Uy = Uy, a0d Wiy, = Uy, for any mq,me €{1,...,n};
e ¢ = vy, and —¢g = vy, for any m €{1,...,n};
o fi(VmyseeesVm,) =i and = f(Vmy, ooy Vmy, ) = Vi
for any my,...,my) €{1,...,n};
o Ri(vmy,--- ,vmw)) and = R; (Vs - - - ’IUT"/A(:'))
for any ma,...,ixg) €{1,...,n}.
We note that (1) only the n variables vy, ..., v, are occurring in formulae in

I'*,, and (2) I'*,, is finite whenever L is finite.

If A is a L—structure and h a valuation in A, then T'* (A4, h) is given by

*(A k) :=={p € T*caraa ; A = @[h]}.

Lemma 4.4.7 Let A,B € Str L be finite. A map n : A — B is an isomor-
phism iff for any valuation h into A, I'*(A, h) = I'*(B,n o h).

Proof. Assume n : A — B is an isomorphism and h is a valuation into A. So
card | A| = card |B|. So we only have to consider formulae in T ,rq |.4)-

Also, for any structure C, any valuation h into C and any ¢ € I'* a4 |c| which
is not a negation, we have —p € I'*(C, h) iff ¢ ¢ T*(C,h), so we can actually
restrict our attention to the non—negated formulae.

Let ¢ € T*(A, h).

o if o = vy, = Up,, then we see that

pel™(Ah) T h(vm,) = h(vm,)
iff noh(vm,)=mnoh(vm,) since n is a bijection

ifft oeT*(B,noh)
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e similar for the other cases.

For the other direction, we first note that I'*(A, h) = I'*(B,n o h) for any
h implies card |A| = card |B|. Now let h be a valuation into A which is 1-1
on {v1,...,Vcard|A|}.- Then for n with I'*(A, h) = I'*(B,n o h), n is a bijection
since for a,b € |A|, a # b, we find v;,v;, i,j €{1,...,card |A|} with h(v;) = q,
h(v;) = b, so ~v; = v; € I'*(A,h) and thus —v; = v; € I*(B,n o h), ie.
n(a) = n(h(v;)) # n(h(v;)) = n(b). Since a,b were arbitrary, n is 1-1 and thus
by finiteness a bijection. Moreover, for any constant-symbol ci, cit = h(v;)
for some i €{1,...,card |A|}, so ¢, = v; € T*(A,h) = I*(B,noh), so B =
n o h(v;) = n(cft). Similar argumentations for function— and relation-symbols

show that n is an isomorphism. ]
Exercise 4.4.8 Write out the details of the above proof.

Lemma 4.4.9 If £ is a finite formal languageﬂ and A is a finite L-structure,
then there is a L-sentence y 4 such that for any B € Str L,

B, iff A=B.

Proof. Let h be a valuation into A which is 1-1 on {v1,...,Vcara|4|}. Since
the language is finite, I'*(A, h) is finite, say T*(A, h) ={tq,...,9¥;}. Let the
L—formula ¢ 4 be given by ¢ 4 1=y A... Ay. Moreover, for n € N, let p,,
be the sentence expressing that there are at most n elements in the universe.

Now let card | A| = n. We claim that the desired L—sentence 7y 4 is

YA = P<p ATV1 .. Funpy.

It’s easy to see that A =7 4. Now assume A = B. Then by Theorem [4.4.6]
A=B,and A=y, so BE=vy4.

Conversely, if B = v 4, then B has at most n elements and is thus finite. Also
B = Juy...3v,04, 50 B |= ¢ 4[h'] for some valuation A’ into B. Letn : A — B
satisfy n(h(v;)) := h/(v;) for all ¢ €{1,...,card |A|}. (This uniquely defines 7
since h is supposed to be 1-1 on {vy,...,v,}. Now let ¢p € T'*,,. If ¢p € T* (A, h),
then B = v[noh] by the choice of b’ and since b’ = noh. On the other hand, if
1 ¢ T*(A, h), then (1) if ¢ is not negated, —1) € I'* Ah and thus B = —w[noh],
ie. B}~ ¢[npoh], or (2) if ¢ is negated, say ¢ = o, the same argument holds
using? instead of —). So together we get, for any ¢ € I'*,,,

B = ynoh]iff ¢ € T*(A,h).

580 £ has only finitely many non-logical symbols, cf. Definition m
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Since B is finite and has at most card|A| elements, I'*(B,n o h) is a subset
of I carda |4, s0 we get (A, h) = I'"(B,noh). But by Lemma 4.4.7, 7 is an

isomorphism. ™
Proposition 4.4.10 If A and B are finite L—structures, then
A= Biff A=B.

Proof. Clearly we only have to show the right—to—left half (the other direction
is exactly [4.4.6). So assume A % B. Define

& :={n : A— B; nis bijective} .
Now none of the n € £ is a isomorphism, so we find, for every n € &,

a constant-symbol ¢ such that n(cf') # cf
or a function-symbol f; and a1,...,a,;) € |A| with
A B
n(fj (al’ e 7au(j))) 7& fj (77(0'1)’ cee 777(au(j)))
or a relation-symbol R; and a1,...,ay:) € |A| such that

not [R;‘l(al7 cyayy) i RiB(n(al), —oon(axay))]-

Let £ be the sub-language of £ containing only one such constant—, function—
or relation—symbol for every n € £. Then L; is finite. Clearly every L-
isomorphism would be a £;—isomorphism, so also in £1, A and B are not iso-

morphic. Applying Lemma ]
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Chapter 5

The Lowenheim—Skolem

Theorems

The main goal of this chapter is to demonstrate that there are limits to the
extent in which first—order theories influence the cardinality of their models.
We will be show that, roughly speaking, the number of non—logical symbols
of a language marks the lower boundary for the number of elements in the
models, and that for theories with infinite models, there is no upper limit to the

cardinality of models.

5.1 Cardinality

The aim of this section is to explain the basic notion of the cardinality of a
set. It is not meant to be an introduction to the theory of cardinals, since we
are interested in an intuitive understanding of the concept of cardinality and
in its precise definition in the context of Set Theory (which is where cardinals
originated).

The Lowenheim—Skolem theorems deal with the size a model of a theory may

Figure 5.1: Leopold Lowenheim (1878-1957)

%)
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Figure 5.2: Georg Cantor (1845-1918)

have. Therefore, we need a way to measure a model’s size and to compare it
with other models. A rather straightforward way to measure a collection’s size
is clearly to count the entities that belong to that collection. Then, we attach
the number we found by this counting as the collection’s measure. Even if we
do not want to deal with the (abstract) concept of numbers, we are still in a
position to compare collections with respect to the number of their elements by
making a one—to—one assignment of their elements: The larger collection will

always have some elements which cannot be assigned.

[ J
[ J
[ J
P Na
[ Ay
* e
g e °
\ N,
e
A B

Set Theory (which, as mentioned above, is not the focus of this section)
provides the notion of bijective mappings (cf. Section which fulfill the task
of such a one-to—one assignment. If there is a bijective mapping from some set
A onto a set B, then these sets are said to be equipotent, i.e. they have the

same number of elements, the same size.
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A cardinal (number), then, is a representative for the equivalence class of all
sets having the same size, chosen in a canonical fashion. So cardinals are special
sets representing all the sets to which they are equipotent. If there is a bijection
between a set X and a cardinal k, then we say that X is of cardinality k, card =
K, alluding to the fact that two distinct cardinals may never be equipotent. In
fact, Set Theory proves that there is at most one k for a given set X such that
card = k. In Set Theoretic contexts where the Axiom of Choice is assumed, “at

most one k” can be replaced by “exactly one k”.

Exercise 5.1.1 Show that equipotency, as introduced above, is an equivalence

relation.

We now know how to find out if two sets have the same size; but there
needs to be also a way to compare sets with different cardinalities. Our intuitive
understanding of a bijective assignment as an abstract representation of counting
suggests the idea of injective mappings representing the assignment of a whole
set A onto a part of a set B (for which we not necessarily have to use the whole

of B). So there may be some elements left in B, therefore B must be at least

as big as A.

We will agree on the fact that A is at most of the size of B, or A is at most as

big as B, if we find an injective mapping from A to B.
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Exercise 5.1.2 Turning the above reasoning upside down, what kind of map-
pings from B to A would in an equally plausible way constitute the fact that B

is at least of the size of A?

Exercise 5.1.3 Show that if A and B are equipotent, then both A is at least
of the size of B and B is at least of the size of A.

There are a few questions which usually turn up when students are first
confronted with this way of counting elements. First, you may wonder in what
this method differs from everyday counting methods. Actually, it differs not at
all, certainly not as long as we stay within certain limits regarding the nature
of the collections we are considering. The step from comparing collections to
assigning an abstract representative for the number of its elements can be found
both in the process of counting apples in a basket and in the measuring of the
cardinality of sets.

Cardinals are not arbitrary as sets, all to the contrary, they are required
to satisfy certain requirements we will not further elaborate here. But as a
consequence of the rather special form of cardinals, we have to make sure that
there are cardinal numbers any kind of sets, even for rather large sets such as
the set of natural or real numbers. As a matter of fact, in most mathematical
contexts, there is a firm belief in the Axiom of Choice, and it is exactly this axiom
which — within the Set Theoretical foundations of Mathematics — provides us
with cardinals for any kind of set. Therefore, we will never have to worry to run
out of cardinals.

Another question might be whether we could ever run out of sets. In other
words: Is there an upper bound to the size of sets? The answer is clearly no,
and the reason lies in the (axiomatically given) fact that for any set A, the
power set P(A) of A (i.e. the collection of all of A’s subsets) is again a set.
Moreover, P(A) can be shown to be strictly larger than A, i.e. there is an
injection from A into P(A), but not vice versa, and clearly there is no bijection
between those two sets. The argument to show this involves a technique which
can be applied equally well to several other contexts and therefore has a name:
The Diagonal Argument. Its application to Set Theory goes back to Cantor and
can be summed up as follows: If we assume that there is a bijection 1 between A
and P(A), then we look at the subset D of A given by D :={a € A; a ¢ n(a)}.
Since D is a subset of A, there must be some d € A with n(d) = D. But this
leads to a contradiction since then d € D if and only if d ¢ D.

Exercise 5.1.4 How do we come to this contradiction?

Yet another question: Since we accept the existence of infinite sets, how can

they be distinguished from finite sets? The answer can be given in two ways,
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which in Set Theory must be distinguished because of their different axiomatic
foundations, but which for our purposes can be regarded as equivalent: A set
is infinite if it is at least as large as the set of natural numbers. On the other
hand, a set is finite if it is not infinite. Alternatively, a set is (Dedekind-)
infinite if there is a bijection onto one of its proper subsets. Consequently a set
is (Dedekind-) finite if it is not (Dedekind-) infinite.

The finite cardinal numbers bear the same names as their respective natural
numbers. The infinite cardinals, on the other hand, are designated by the
hebrew symbol X (aleph) with the appropriate index: ¥g is the first infinite
cardinal, W; the second, etc. Sets of cardinality Ny are called countable or
countably infinite, a nomenclature which originates from the idea that those
sets are of the same cardinality as the set of natural numbers N and could
therefore be numbered or counted by the natural numbers. Infinite sets which
are not countable are, of course, uncountable. Just as there are different sizes

of finite sets, there are different levels of infinity.

Exercise 5.1.5 Which of the sets N, Z, Q, R, C, N2, P(N) are countable?

We are all quite used to do calculations with finite sets, such as to build the
sum / difference / product of their numbers of elements. To be more precise, we
are able to calculate the number of elements in constructs such as the set union
or direct product using elementary arithmetic on the numbers of elements in the
argument sets of the constructions. E.g. for finite sets A and B, the number of
elements in the direct product A x B is the product of the number of elements

in A and the number of elements in B,

card(A x B) = (card A - card B),

or the number of elements in a union of sets Ay, ..., A, is at most the sum of

the numbers of elements in the A;’s,

n n

card(U A;) < Z(card A;)

i=1 i=1

As for finite sets, there is a way to do calculations with infinite cardinals, but
some results are quite different from the ones for finite sets. (The proofs of the
following statements can be found in any textbook on Set Theory.)

The sum of two cardinals is defined as the cardinality of the disjoint union of
two sets of the cardinality corresponding to the summand cardinals: The sum of
2 and 3 is 5 because the disjoint union of a two-element set and a three-element
set is a five-element set. Applying this (not too precise) definition to infinite

cardinals, we may find that the disjoint union of two infinite sets can always
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be mapped bijectively onto the larger of the two sets. Therefore, the sum of
two infinite cardinals is always equal to the larger of the two cardinals.This may
be generalized to more than two (or even infinitely many) argument sets: If

neN X”
and HneN X, again have cardinality < k. These facts will be used in the next

X, (n € N) are countably many infinite sets of cardinality < x, then |J

section.

5.2 Cardinality and Languages

The Lowenheim-Skolem Theorems are statements about how the possible size
of a model of a theory in some language £ depends on the number of non—logical
symbols in this language. To clarify this point, we introduce the notion of the

cardinality of a language and that of a model.

Definition 5.2.1 For a formal language £, the cardinality of L, notation
I £, is given by
| £]:= card(Fml £).

The motivation for this seemingly arbitrary definition will become clear once

the Lowenheim-Skolem Theorems are formulated and proven.

The definition of the cardinality of a model is slightly more straightforward.

Definition 5.2.2 For a structure A € Str £, the cardinality of A, notation
card A, is defined to be the cardinality of the universe of A:

card A := card | A|.
Lemma 5.2.3 If £ is a formal language given by index-sets I,J and K, then

|| £ ||= max{card I, card J, card K, Ny }.

Proof. Because we lack the formal apparatus to give a precise proof, we will
not go into details here, but give an outline of the reasoning:

An L-formula ¢ is a finite sequence of symbols, therefore there are at most as
many formulae as there are sequences of symbols. We defined a formal language
to have countably many variables vg, v1, ... (that is why we have to explicitely
include Xg in the equation), so the cardinality of the set of terms is at least

Rg. Since every constant symbol is a term, and, for every function symbol f;,
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fj(vo, ..., v,(5)—1) is also a term, the cardinality of the set of terms is at least
k= card(J U K U {v;;i € N}) = max{card J, card K, Ro }[[]

On the other hand, every term is a finite sequence of variables, function sym-
bols and constant symbols (and some auxiliary symbols like brackets), hence
there are at most as many terms as there are sequences of this kind. But the
cardinality of the set of sequences of variables, constant or function symbols is
card|J,en((J U K U {v;;4 € N})™). From the remarks at the end of the pre-
vious section, we know that this is again x. This proves that the set of terms
has cardinality max{card J,card K,Ro}. Similar arguments applied to the set
of L—formulae prove the claim of the lemma. [

For the next result, the reader is kindly invited to recall the Completeness
Theorem for First Order Logic. One way to formulate this theorem is by the

following statement:

Theorem 5.2.4 Every consistent set of sentences has a model.

The Downward Lowenheim—Skolem Theorem may be seen as the following

sharpening of the statement of Theorem [5.2.4

Theorem 5.2.5 (Extended Completeness Theorem) If 3 C Sen £ is con-
sistent, then there is a model A of ¥ such that card A <card L.

Instead of proving the Extended Completeness Theorem directly, we
are going to analyze the steps necessary to verify the Completeness Theorem
[-2:4 under the aspect of cardinality. Such a proof in most cases consists of the

following steps:

1. [Max] Show that every consistent set X of L-sentences can be expanded

to a maximally consistent set of sentences.

2. [Wit] Show that every consistent set ¥ of L-sentences can be expanded
to a consistent set X’ of £'-sentences, where £’ extends £ by adding new

constants such that every existential sentence has a witness.

3. [CT £'/X] The term-structure of £’ modulo ¥ is a model for the original
consistent set ¥ of L-sentences.

Let us now analyze these steps under the aspect of cardinality. Moreover,

let us assume that we start with a language £ that has cardinality .

'Without loss of generality, we assume the sets I,J, K and {v;;4 € N} to be pairwise
disjoint.
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1. Clearly, every (consistent or not) set 3 of L-sentences has a cardinality

at most k since a set of sentences is a subset of the set of formulae. The
same holds for a maximally consistent set of L-sentences. Therefore, in

step (Max), we do not exceed the cardinality x given by the language.

. This step consists of an infinite number of expansions £; (i € N) of the

language L. If £; is given, £;.1 is constructed by adding a new constant

symbol c3., for every existential sentence dxp € Sen L, so

|| Liy1 ||= max{card I, card J, card(K; U {c3z,; Iz € Sen L;}), No },

which by simple cardinal arithmetic is easily seen to be k. (The exact
nature of the sets ¥;,11 of £;;1-sentences is of no importance to our con-
siderations since these sets are clearly sets of formulae whose cardinality
is bounded by k as well. However, please note that the languages £; differ

only in their sets of constant symbols, and that Fml £, O Fml £;.)

Finally, £’ is defined to be £ expanded by the sets of new constant sym-
bols introduced in the constructions of the £;’s. From this, | £’ || can
easily be seen not to exceed x since it is defined to be the cardinality of a

union of countably many sets whose cardinality is x,

£ = card(U | £i ) < card(Rg x k) = &.
i€N

From this we see that also the constructions in this step do not cross the

cardinality boundary set by L.

. By definition, the term-structure CT £'/%’ has as universe the set CT L’

of closed terms of £ modulo the equivalence relation =y given by
tl Xy t2 iff Z/ - tlﬁtg,

i.e. an element of CT £L'/%' is an ~y/—equivalence class.
Since t=t € Fml £’ for every t € CT L', we find that

card(CT £') < card(Fml L")

and because the assignment ¢ — [t]~_, defines a surjection from CT L’ onto

CT LY,

Ny

card(CT L'/%") < card(CT L').
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Figure 5.3: Thoralf Albert Skolem (1887-1963)

We conclude
card(CT £'/Y) < card(CT £') < card(Fml L) = || L' ||= k.

In other words, the constructed model’s cardinality is at most .

5.3 The Downward Loéwenheim—Skolem Theo-

rem

Let us now combine and apply the results from the previous section.

Theorem 5.3.1 (Downward Léwenheim—Skolem Theorem)
If ¥ C Sen L has a model, then ¥ has a model whose cardinality is at most
Ll

Proof. This is nothing else than Theorem which we just proved. ]
The following special case of Theorem [5.3.1] is merely of historical interest,
since it is thus that the Downward Lowenheim—Skolem Theorem was originally

formulated.

Corollary 5.3.2 If £ is countable (finite or infinite), then ¥ C Sen L has a

model iff ¥ has a countable model.

The proofs of the following direct consequences of the Downward Lowenheim—

Skolem Theorem [5.3.1] are left as exercises.

Corollary 5.3.3 If £ is countable (finite or infinite), then ¥ has a countable

model.

Corollary 5.3.4 If a sentence @ € Sen £ has any model at all, then « also has

a countable model.
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Corollary 5.3.5 if A € Str £, then thereis a B € Str £ with B = A and card B <||
L.

Corollary 5.3.6 A (consistent) theory which has only uncountable models can-

not be axiomatized by countably many axioms or in a countable language.

The following corollaries present more example-related results (the proofs
of which are omitted since they follow simply from having a closer look at
the respective languages): Remember that ZFC is the Set Theory of Zermelo—
Frinkel with the Axiom of Choice formulated in the (strikingly simple) language

consisting of nothing but the binary relation—symbol €.

Corollary 5.3.7 If ZFC is consistent, then ZFC has a countable model.

Unfortunately, the premise cannot be omitted, since it is not known whether
ZFC is consistent or not. But still, since a whole generation of mathematicians
successfully develop their branch in the world based on Set Theoretic notions and
thus on ZFC, we may, at least for the moment, assume that ZFC is consistent
and later, if ever we should stumble over an inconsistency, try to fix the leak.
So, if we plant our beliefs in this ground, the above corollary states that there
is a countable model for ZFC; that is, there is a set (!) M equipped with a
binary relation € which mirrors the whole universe of sets, with the “element
of’—relation € modelled by the binary relation €. As elements of this set, we
find all ordinals, cardinals, sets we can prove to exist according to ZFC and
the like. Among other, we may therefore even find M itself inside this model
M. But this would imply that M cannot possibly be a set in the sense of
ZFC. This seeming paradoxon is resolved with the realization that, e.g., being
uncountable in the model M is not the same as being uncountable in the universe
of sets; alternatively, if you prefer a less platonistic point of view, the meaning
of being uncountable depends on the context — or model — this expression is
interpreted in. For more on this subject, we refer the reader to any of the books

on (axiomatic) Set Theory mentioned in the bibliography.

Corollary 5.3.8 There exists a countable algebraically closed field (as a sub—
ring of C).

Corollary 5.3.9 There exists a countable infinite Boolean algebra.

The first of these results confronts us with the fact that, algebraically speak-
ing, the field of complex numbers is far too big for the purpose of solving any
given equation. It is also noteworthy that the witnesses added in the iterative
process of extending a given subset are solutions of equations, and the witness—

extentions are algebraic extensions.
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Figure 5.4: Alfred Tarski (1902-1983)

For the second example, the astonishing fact is that we easily find examples
of finite or uncountable boolean algebras by looking at the powerset of some
set. For a countable infinite boolean algebra, we cannot proceed the same way,
since for finite sets, the powerset is finite, and for infinite sets, the powerset is
uncountable. But we know by the main theorem of this section that a countable

boolean algebra must existsﬂ

5.4 The Upward Lowenheim—Skolem Theorem

In this section, we are going lo look in the opposite direction of what we have
just arrived at: While the Downward Lowenheim—Skolem Theorem shows the
existence of small models (where of course the exact meaning of small de-
pends on the formal language that is used for the formalization), the Upward
Lowenheim—Skolem Theorem will prove the existence of arbitrarily large models,
under certain provisos. Once we have proved this upward variant, there will be

two main conclusions to be drawn from this:

e For every first-order theory there are non—standard models, provided this
theory has at least one infinite model; e.g. there are uncountable models

of Paeano—arithmetic.

e First—order formal languages are incapable of expressing cardinalities out-
sizeing their own cardinality. This is exemplified by the fact that when
considering Q as a structure for the language having as sole non—logical
symbol the binary relation—symbol <, Th Q has uncountable models; the
(rather poor, in terms of expressive power) language of order is unable to

distinguish countable from uncountable.

2A direct approach to this is to show that {s € N;s finite or N \ s finite} is a countable
infinite boolean algebra. But there are more refined variants of this result which no longer can
be verified by such a direct construction, i.e. the existence of an atom—free countable boolean
algebra.
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We have to face the question about a method to force structures to exceed
certain cardinalities. As in the previous section, the tool to ensure great sizes
of models is the language itself (cf. for the definition of L¢):

Lemma 5.4.1 Let £ be a formal language, and let C := {cg ; 8 < K} be a set
of cardinality x of (pairwise distinct) constant—symbols (which may or may not
belong to £). Let L be the formal language £ with the elements of C added as
constants (if necessary), and let ' C Sen L& be given by T' := {—¢=c ; ¢, €
C, ¢ # '}. Then for any Lo-structure A, if A T, then card A > k.

Proof. Exercise. [ ]

Proposition 5.4.2 Let £ be a formal language and ¥ C Sen L. Moreover, let

C be an infinite set of constant—symbols not in £. Then
YU {=e=c; ¢, € C, ¢# '} has a model iff ¥ has a model.

Proof. Let I' := {—c=c ; ¢, € C, ¢ # '}

If X UT has a model, say A, then by lemma card A > card C, so A is an

infinite model, and it is clearly also a model of X.

Conversely, if ¥ has an infinite model A, then for any finite I'y C I" and any finite

3o C X, AE X¥yUTy, where the new constant—symbols in Ty are interpreted

as arbitrary, pairwise distinct elements of A. It follows that any finite subset of

3 UT has a model, so by compactness, ¥ U T itself has a model. [
As an exercise, analyze the proof of Proposition [5.4.2] to find out why the

model of 3 has to be infinite.

Theorem 5.4.3 (Upward Léwenheim—Skolem Theorem)
Let £ be a formal language and A € Str £ be infinite. Then, for any « >| £ ||
there is an L-structure B with B = A and card B = «.

Proof. Let ¥ := Th A, let C be a set of s distinct new constant—symbols not
in £,and I := {=c=c ; ¢, € C, c#£'}.

By Proposition [5.4.2] ¥ UT has a model. Thus, by the Downward Lowenheim—
Skolem Theorem [5.3.1} S UT has a model B with card B < card(CU || L ||) = &,
and from Lemma we know that card B > k. Therefore card B = k, and
clearly B = A because B = Th A. ]

Corollary 5.4.4 No theory has exclusively countable infinite models.

In the context of axiomatizations of N, this implies that if we find the classical

countable infinite model as a model of any axiomatization, we also find models
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of any uncountable infinite cardinality! Clearly these models no longer qualify

as classical models since they simply have too many elements.

Corollary 5.4.5 There is no theory such that any two infinite models are iso-

morphic.

3

Proof. ... because “isomorphic” clearly implies “of the same cardinality”. m

Exercise 5.4.6 Show that there is a set ¥ of L-sentences (for an adequate
language £) such that A is a model for ¥ iff A has either exactly one or infinitely
many elements.

(Hint: Consider ¥ := {(VaVy z=y) V —c=c;¢,¢ € C,c # ¢’} for adequate C.)

We conclude this section by hinting at the possibility of an alternative, more
semantically oriented proof of the Upward Léwenheim—Skolem Theorem [5.4.3
But for the moment, however, we do not have the necessary tools to perform

this aproach and therefore postpone it to Section [7-4]
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Chapter 6

Theories

Since both the definition of “elementary” as well as that of “theory” rely on
the operators Th and Mod, we are confronted with a syntactical notion defined
in semantical terms and a semantical notion defined in syntactical terms. Nat-
urally, one might ask if these circumnavigations are necessary. Hence, we will
look for more direct ways of expressing that some set of L—sentences is a theory
or some class of L—structures is elementary, allthewhile we will remain in the
realm the respective notion belongs to. In Chapter |8 we will see that, contrary
to the seeming symmetry of the definitions, the complexities of the two tasks
differ considerably; the one concerning theories is rather simple and direct, while
the characterization of elementary classes involves non-trivial constructions and

results.

6.1 Theories and Complete Theories

A generally accepted way to represent the fact that a sentence « is deducible

from the empty set of premises is
Fa,

thereby insinuating that, in order to prove «, we do not have to make any ad-
ditional assumptions whatsoever. We thus see that very small sets of premises
may have considerable logical implications. The general rule is: “More assump-
tions imply more conclusions”. However, there is always the possibility that a
set X of sentences already contains every sentence which might be deduced from

it. Such a set of sentences is said to be deductively closed.

Definition 6.1.1 Let £ be a formal language.

69
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(i) For ¥ C Sen L, define Ded X, the deductive closure of X, to be the set
of all sentences deducible from 3,

Ded¥ :={a€Senl; X+ a}.

(ii) ¥ C Sen L is called deductively closed iff ¥ = Ded X.

From Definition it follows immediately that > C Sen £ is deductively
closed if and only if for any a € Aus(L),

YrhaiffaeX.
Let £ be a formal language, ¥ C Sen £, and consider an L-sentence o with
a € ThMod X.

The definition of Th (cf. Definition implies that A = « for any A €
Mod ¥, and with the definition of Mod, we find that A =¥ = A = « for any
AeStrL, ie ¥ a.

Godel’s Completeness Theorem [2.4.T]states that this last statement is equiv-
alent to X F «, which is the same as a € Ded X.

This hints at the way to prove the following Lemma, which reformulates

Godel’s Completeness Theorem by using the operators Mod, Th and Ded.

Lemma 6.1.2 For ¥ C Aus(L),
ThMod ¥ = Ded X.

Proof. Exercise. [ ]

Theorem 6.1.3 (Theories)
3 C Sen L is a theory iff 3 is deductively closed.

Proof. Follows immediately from Lemma [6.1.2 ]
Thus, the Theorem characterizes theories as the fixed points of the
operator Ded, and thereby provides a definition of theories via the purely syn-

tactical notion of “deductively closed”.

Example 6.1.4

(i) The “smallest” L-theory for any formal language £ is obtained from
¥ = (. It follows that

ThMod () = Ded ) = “the set of all theorems of £” # ()
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(ii) On the other hand, we can see that the “largest” L£-theory is Sen £, where

ThModSen £ = Th{) = Sen L.

Please keep in mind that the smallest theory is not the empty set. We can,
however, say that the smaller the theory, the larger the associated elementary
class of models, and vice versa. The largest theory Sen L is special in the sense
that it is inconsistent, and, moreover, that it is the only inconsistent L—theory
(Proof: Exercise). Thus, it is only natural to ask if there are any maximal
theories among the consistent ones. Due to the contra-variant behaviourl] of
the operators Th and Mod, we must have a closer look at the theories of small

classes of models which are yet not too small (i.e. not empty).

Definition 6.1.5 3 C Sen £ is called complete iff ¥ = Th{A} for a single
L-structure A.

The proof of the following Lemma is a simple exercise.

Lemma 6.1.6 Complete sets of sentences are theories.

The semantic characterization of complete sets of £L-sentences is as simple
(and accurate, as will be shown below!) as it can be, i.e. complete sets of
L-sentences are characterized by a single L-structure. The syntactical charac-
terization is, among other results, provided by the next theorem. For further

applications, statement (v) is of special importance.

Theorem 6.1.7 (Complete theories)

For a consistent theory X, the following statements are equivalent:
(i) X is complete.
(ii) ¥ is maximally consistent.
(iii) For any o € Sen L: either ¥ F « or ¥+ —a  (but not both).
(iv) For any A,B € ModX: A=B.
(v) ¥ =Th{A} for any A€ ModZX.

Proof (Excerpt). (i) = (4i): Consider ¥ = Th{A} and o € . Then, A }£ a,

so A = —a, but then ¥ U {a} is inconsistent. Thus, we have shown that any set

e 3 C ¥ = Mod X1 D Mod Xg; similarly for Th.
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of L—sentences expanding ¥ is inconsistent, thus, % is maximally consistent.

(#i) = (i31): If ¥ I/ «, then, thanks to the maximal consistency of ¥ we have

- € X and so clearly X - —a. [
Exercise 6.1.8 i Find proofs for the remaining implications in Theorem
0.1.7 .

ii. Where is the consistency of ¥ being used? Which implications still hold

if consistency is dropped as a premise?

The following examples are presented without proofs:

Example 6.1.9 (Algebraically closed fields of characteristic 0)
Let £ ={+,—,-,0,1} be the formal language for rings and fields.

Let F' be an algebraically closed ﬁeldEI of characteristicEI 0. It is possible
(though not for us, at the moment) to show that Th(F) = Th(C). Thus, the
theory of algebraically closed fields of characteristic 0 is complete, and any
algebraically closed field of characteristic 0 is elementary equivalent to the field
of complex numbers C. In other words, to verify that a sentence « in the
language £ of rings holds for all algebraically closed fields of characteristic 0,
we just have to show that C is a model of « (a task which, depending on the

complexity of a, may involve quite a lot of functional calculus).

Example 6.1.10 (Order theories)
(For the less algebraically inclined.) Let Lo = {<}, i.e. Lo contains < as the

only non-logical symbol. Consider the set X :

o: Ve —(x<x) Irreflexivity

Qo Ve,y,z (z<yhy<z—xz<z) Transitivity

as: Ve,y (x<yVe=yVy<zx) Totality or linearity
ouy: Ve,y (x<y—3z(x<zAz<y)) Density

Qs: Vedy,z (y<z Az <z) No endpoints

An L-structure A € Mod X is called a dense order without endpoints, and we
thus designate the theory of Mod ¥ by Ypowk-

It is quite plausible that both @Q and R are dense orders without endpoints.
Clearly, though, they are quite different; more precisely, they are not isomorphic,

since QQ is countable while R is not. However, with the expressive power of L,

2T.e. in F, every polynom f(z) can be written as a product of linear and constant polynoms:
flz) = c(x — &) - (x — &,). From earlier experiences in elementary math, you probably
remember that this is one of the most prominent features of the complex numbers.

3The characteristic of a field is the order of 1, the neutral element of multiplication, in
the (additive!) group (F,+,0). Thereby “characteristic 0” stands for “infinite characteristic”.
Note that a finite field always has characteristic different from 0, whereas the converse is false.
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we are indeed unable to tell them from one another, since it can be shown (cf.
Section[6.2) that Spowr = Th(Q). Especially, ¥powg is complete and any two

models of Ypowpg are thus elementary equivalent.

Exercise 6.1.11

i Verify that a set X of sentences having both finite and infinite models is

never complete.

ii  Verify that a set X of sentences having finite models of different cardinal-

ities is never complete.

iii Show that this does not hold for ¥ having infinite models of different

cardinalities.

Let us now have a look at a nice property of complete theories: If one

complete theory is included in the other, then they are the same!
Corollary 6.1.12 i For complete theories 3,0 C Sen L:

YCOiff ¥=0.

ii For L—structures A, B:
ThACThBiff A=B.

Proof.

i Let 3,0 C Sen L be complete and ¥ C ©. Let a € SenL ~ X. Then,
- € X, thus —a € © and thus o € ©. Therefore ¥ = O.

ii Almost too easy to be an exercise.

6.2 Proving Completeness of Theories: An Ex-
ample

In this section we intend to give a proof of the completeness of the theory of
dense orders without endpoints, Ypowg. This theory is axiomatized by a finite
set {a1,..., a5} of axioms in the language £ having the binary relation symbol
< as sole non—logical component. The proof of the completeness of Xpowg

roughly consists states and uses a corollary of the upward Lowenheim—Skolem
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Theorem and then shows that, up to isomorphism, there is only one countable
dense order without endpoints. Proving the latter statement, we will introduce

a technique widely used in model theory, the back—and—forth—construction.

Robert Lawson Vaught (1926-2002)

Corollary 6.2.1 (Lo$-Vaught Test) Assume ¥ C Sen L has only infinite
models and, for some cardinal £ > max{®g, card L}, any two models of 3 having

cardinality k are isomorphic. Then ¥ is complete.

Proof. Let A and B be any two models of 3. Then by the Lowenheim—Skolem
Theorems (either upward or downward, depending on the cardinality of A and
B), we find models A" and B’ having cardinality « such that 4 = A" and B = B'.

But then A’ = B’ by assumption, whence A’ = B’, and we conclude
A=A =B =B.

So we showed that any two models of ¥ are elementary equivalent, which is
equivalent to X being complete. [

As we mentioned earlier, elementary equivalence is — as a criterion of iden-
tification — coarser than isomorphism. In the following we will show that, up
to isomorphism and thus also up to elementary equivalence, there is only one
countable dense order without endpoints. Using Vaught’s Test we may thus
conclude that ¥powp is complete and, (Q, <) being a model of ¥powg, any
dense order without endpoints is elementary equivalent to (Q, <). But we do
not claim that R and Q are isomorphic as dense orders without endpoints (they
are not of the same cardinality), nor do we claim that any two uncountable dense
orders without endpoints, even if they have the same cardinality, are isomorphic.

From[6.1.10] recall the axioms for the theory Xpowg of dense orders without

endpoints.

Proposition 6.2.2 Any two countable models of Xpowpg are isomorphic.

Proof. The proof is done using the back—and—forth—construction which

delivers an isomorphism via (in the general case transfinite) induction.
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Suppose A and B are countable models of Xpowg. So we find enumerationﬂ
(an ; n € N)of |A| and (b, ; n € N) of |B|]. We will now define new enumerations
(al,; n € N) of |A| and (b], ; n € N) of |B| such that the assignment a/, — b/, is
order—preserving and thus defines an isomorphism from A to B. This again is
done by a countable variant of transfinite induction:

Assume that for any 4, j < n, a] < af; iff b; < b};. We distinguish the following

two cases:
e if n is even, say n = 2m, we define a!, := aj such that k is minimal
with ar &{ag,...,a,_1}. Then we have to consider the following three
subcases:

— al, < a} for all ¢ < n, in which case we choose b/, such that b, < ¥/

for all i < n, which can be achieved since B has no endpoints; or

— al, > a} for all ¢ < n, in which case we choose b}, such that b, > ¥/

for all ¢ < n, which can be achieved for the same reason; or

— aj < a,, < aj,, for some i < n, in which case we choose b, such that
b; < by, < bj,, for all i < n, which can be achieved since < is dense
on B.

e if nis odd, say n = 2m+1, we define b/, := by, such that k is minimal with
b, &{bj,...,b,,_1}. Again we are to face three subcases which are dealt

with as above, switching the a’s and b’s and A and B respectively.

To show that the assignment a!, — b/, does indeed define an isomorphism
between A and B (i.e. an order—preserving bijection with order—preserving
inverse) is left as an exercise. ]

As an illustration, let’s have a look at how this back—and—forth mechanism
could work in detail. Suppose we are given an enumeration (g, ; n € N) of Q and
an enumeration (b, ; n € N) of B=((0,1) N Q, <). Note that B thus defined is a
countable models of X¥powg. The construction starts at n = 0, where we are to
take go and assign it to any b; (no constraints so far). So let’s say ¢, = go = 0,
and for b, we chose baapzes, Which happens to be, say, 5/13. The next step
(n = 1) goes from B to Q. So we are to take for b} the b; with smallest i not
yet dealt with, which is clearly by, say 19/69. Since b} < bf,, we must take for
¢} some rational number smaller that g(, so let’s say ¢; = —1, which happens
to be some g;, say q1, by some fancy coincidence. The next step is n = 2, so we
start with Q again, taking for ¢4 the ¢; with smallest ¢ not yet treated, which
happens to be ¢, say g2 = 1. Then ¢} > ¢{, g1, so we have to find a b}, which is

4 An enumeration of a set X is a bijection from N onto X, i.e. a map from N to X, which
justifies to write the enumeration as (z, ; n € N).
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strictly greater than both bj and b}, which could be 37/95 or any other rational
number strictly between 5/13 and 1. And so on ... .

Exercise 6.2.3 Run the first few steps with your favorite enumerations of Q
and (0,1)NQ. (If you do not have a favorite enumeration of (0,1) NQ, take the

enumeration of Q and restrict it to the interval (0,1).)

The above proof may be paraphrased as follows: A countable dense order
without endpoints has an overall similarity in the sense that any non—empty
open sub—interval looks exactly like the set itself, so the same holds for any two
open sub-intervals. By assigning the first element of A to some bf, we divide
both A and B into two sub—intervals which have this mutual similarity. But
then we may continue, using the same argument for these sub—intervals, and so
on. In a way you could say that dense orders without endpoints have a flexibility
which allows them to be stretched without altering the structural information.

Now, for the case of uncountable dense orders without endpoints, we consider

the following example:

Example 6.2.4 Let A be the subset of R given by A :={( e R; 0< (< 1}
U{geQ; 1<qg<2}. Then

e A is uncountable since it is the union of a countable and an uncountable

set;

)

e A =(A, <) is a dense order without endpoints since the axioms aj, ..., a5

are satisfied in A (Exercise: verify this!);

e but A is not isomorphic to R! To see this, first note that an isomorphism,
being a homomorphism after all, is bound to map intervals onto intervals
since it preserves the order <; now, assuming 7 : R — A is onto and
order—preserving, we find a ¢, € R such that n(¢,) = 3/2. But then 7 must
map the (open) interval {¢ € R; ¢y < (} totheset {g € Q; 3/2 < ¢ < 2}.
But then ¢ cannot be 1-1 since it maps an uncountable set onto a countable

one.

Exercise 6.2.5 An example somewhat different would be to let A := R\ {0}
and to show that (R, <) and A =(A, <) are not isomorphic. Does that work?
How about (Q, <) and (AN Q, <)?



Chapter 7

Ultraproducts

In this chapter we will take our first steps towards the definition of a technique
for building new models. This technique will unite the two tools of products and
quotients of structures, notions which readers are familiar with from earlier ex-
periences in algebra. Combining these notions, we will introduce ultraproducts,
which provide models for theories that are no longer elementary equivalent to
the models the construction is based upon.

The results we aim at are not basic and require some definitional input,

which we give in the following section.

7.1 Ultrafilters

For the following section, readers should recall the definition of cartesian prod-
ucts and their associated projections from Section [1.3)).

Definition 7.1.1 Let S be a set and, for s € S, let A, be an L-structure.
Then, the direct product J] ¢ As is defined as the following L-structure:

e The universe is the cartesian product of the universes, i.e.

T A =TT 1A

ses sES

e The relation—, function— and constant—symbols are interpreted by compo-

nent, i.e., writing B for [[ ¢ As,

for all relation-symbols R; and all a1, ...,axu) € |[],cq Asl,
RB(as,. .., axgy) iff, for all s € S, Rf‘s (ms(a1), ..., ms(ar@)));

7
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for all function-symbols f; and all a1, ..., a,x;) € |[[,cqAsl;

ff(al, ey au(j)) :<f'AS(7TS(a1), N ;ﬂ-s(au(j))) ;S € S>, and,
for all constant—symbols ¢y,

B =(cl;se8).

Of course the conventions in notation used for cartesian products (cf. Section
11.3) apply to direct products of structures as well.

We may be tempted to try building new models for theories from old ones
by simply using direct products of structures. However, as the following simple

counter examples show, direct products are too generous, in the sense that, in

general, they no longer belong to the given class of structures.

Example 7.1.2 The direct product of a family of fields is, in general, no longer
a field (as an exercise, verify this by examining Zq X Zo for divisors of zero).
The direct product of a family of total orders is, in general, no longer a total
order (e.g. N x N).

The solution is to not consider the product per se, but merely an appropriate
quotient, i.e. we are going to work with reduced products. To define the equiv-

alence suitable for our purposes, we need the following notion of ultrafilters.

Definition 7.1.3 (Ultrafilter) Let S be any non—empty set. Then, a filter
U CP(S) over S (cf. [1.5.3) is called an ultrafilter over S iff

(iv) V C S implies [either V € U or S\ V € U].

We have attached the number (iv) to the clause to remind you that in Defi-
nition we already fixed three clauses which define a system F as a filter:

(1) Ul,U2€f:>UlﬁU2€f,
() Ue F,UCV CS =V eF, and
(iii) 0 & F £ 0.

Remark 7.1.4 An ultrafilter U over S is best thought of as a system of suffi-
ciently large subsets, and with this in mind the above clauses can be read in the
following way.

1. (i) The intersection of two sufficiently large sets is still sufficiently large.

(ii) A set containing a sufficiently large subset is itself sufficiently large.
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(iii) The empty set is not sufficiently large.

(iv) Any set is either sufficiently large or else its complement is sufficiently

large.

Remark 7.1.5 Excluding P(S) from the collection of filters is not a generally
accepted practice. Some authors include both P(S) and @) but distinguish them

from the so-called proper filters.

Remark 7.1.6 If S is any nonempty set and X C P(S), we may ask whether
we can find a filter U over S such that X C U/. If there is such a filter, then we
might just as well look at () {¢ C P(S); U is a filter and X C U}. By doing
this, we realize that there is a smallest filter containing X', the so-called filter

generated by X, in which case X is said to generate this filter.

Remark 7.1.7 A further conclusion from the above is that a system X of
subsets of S generates a filter iff X’ satisfies the finite intersection property

f.i.p., by which we mean that
for any finite subset {Uy,...,U,}C X we have Uy N...NU, # 0.

Satisfaction of the f.i.p. is a necessary and sufficient condition for being a subset
of a filter. This is easily seen after showing that generating a filter from a system

X means collecting all the supersets of finite intersections of elements of X.

Remark 7.1.8 It is obvious that for any U C S with U #0,{VCS; UCV}
is a filter over S. This filter is clearly the filter generated by {U}. We may even
find an ultrafilter by choosing, for some p € S,

U={UCS;{p}CU=UCS,;pel},
i.e. by taking the filter generated by X = {{p}}. U thus defined is called the

ultrafilter fixed at p.

Nevertheless, thinking of elements of U as sufficiently large (as we did in
Remark [7.1.4) will not work with fixed ultrafilters, since wunrealistically
small subsets such as {p} are contained in U as well. Of greater interest

for our purposes are the free ultrafilters, i.e. ultrafilters ¢ with

U= cs;Uecut=0.

(As an easy yet illuminating exercise, the reader is asked to verify that an
ultrafilter U is fixed at some p € S iff NU # 0.)
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Figure 7.1: A fixed ultrafilter

Remark 7.1.9 U is an ultrafilter if and only if U is a mazimally proper filter,
i.e. iff U is a filter, U # P(S), and for any filter V with & C V # P(S) we have
u="y.

1. To understand this, note that if I/ is an ultrafilter, V a filter and U € V\U,
then S\ U €U C V, thus = U N (S \U) € V, thus condition (iii) is
violated for V. For the other direction, if I/ is not an ultrafilter, then we
find a U C S such that both U ¢ U and (S \ U) ¢ U. But then at least
one of the following holds:

forall V eUU,UNV #0 or

forall Ve, (S\U)NV #0.

We conclude that & U {U} or U U {S \ U} (or both) generate a filter
properly extending U.

Remark 7.1.10 As an exercise, the reader may prove that U is an ultrafilter
over S if and only if I/ is a prime filter over S, i.e. iff, for any U,V C S,
UUV el impliesU eld or V € U.

Remark 7.1.11 Closely related to the previous remark is the following obser-
vation (the proof of which is left as an exercise). Let U be an ultrafilter over
some set S and U € U, and suppose that U = Uy U...UU, (n € N). Then,
U; € U for some i €{1,...,n}.
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1. If additionally U; N U; = 0 for all 4,5 €{1,...,n}, i # j, then U; € U for
exactly one i €{1,...,n}.

Remark 7.1.12 (This is intended for those readers who are already familiar
with boolean algebras.) Regarding P(S) as a boolean algebra, we see that
filters over S coincide with the inverse images of the largest element 1 under
some boolean algebra-homomorphism 7.

If, moreover, n : P(S) — By where By is the two—element boolean algebra,
then 7' (1p,) is an ultrafilter. Thus,

1. wltrafilters coincide with the inverse images of 1g, under boolean algebra

homomorphisms with codomain Ba.

We have seen that filters, even ultrafilters, are easily constructed as upper
closures under C of some U € P(S). Yet, as we have also mentioned, the fized
ultrafilters we thus obtain are not our main concern here, for reasons we will
elaborate on later. The existence of free ultrafilters, on the other hand, is not
obvious at all, as is shown by the (unavoidable!) use of Zorn’s Lemma in the

proof of the following Lemma.

Lemma 7.1.13 The following holds for any non—empty set S:

1. Any family x C P(S) having the f.i.p. generates a (proper) filter.

2. Every proper filter F over S is contained in some ultrafilter U 2 F over

S.

Proof.

1. This is just an elaboration of our observations concerning the generation
of filters. Suppose X C P(5) has the f.i.p., and let

F:={UCS; Xin...nX, CU for some X;,...,X,, € X}
We must check conditions (i) — (iii) for filters.

(1) If U,U; € F, then X;N...NX,, CU; and Y1 N...NY,, C U, for
some X1,...,X,,Y7,...,Y,, € X. It follows that

Xin..nX,NnY1nNn...nY,, CU NUs,

soUNU; € F.
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(ii) U € F and U CV, then
Xin...nX, CU for some Xy,..., X, € X,

but then also X1 N...N X, CV,s0V € F.

(iii) @ ¢ F by f.i.p., and F # @ since X C F.
2. Let F be a proper filter over S and let
P:={V CP(S); Vis a filter over over S and F C V} .

P # () since F € P. Now take any non-empty chainl] C C P and let
Vo := JC. Then, we see that V, is a filter over S. We verify this again
by checking (i) — (iii) for filters:

(i) If Uy, Uz € Vy, then Uy € V; and Uy € Vs, for some Vi, Vs, € C. But
then, since C' is a chain, Uy, Us € Vy or Uy, Us € V5 and thus, since
V1 and Vs are filters, Uy NUy € Vy or Uy NUy € Vs, so U NU; € V.

(ii) U € Vo and U C V, then U € V for some V € C, but then V €V
since V is a filter, thus V € V.

(ii) 0 ¢ Vy since otherwise () € V for some V € C, contradicting the fact
that all V € C are filters; Vy # 0 since F # () and F C V.

As we can see, Vy € P is an upper bound for C' in P. Using Zorn’s Lemma,
we find that there is a maximal element i/ in P, i.e. U is a maximal filter
containing F. Using the remark above, we see that U is an ultrafilter

extending F.

]

Please note the use of Zorn’s Lemma in the proof. Actually, the statement of
Lemma, can be shown to be equivalent to Zorn’s Lemma and thus also to
the Axiom of Choice. Readers who are somewhat familiar with the history and
axiomatics of Set Theory will remember that one of the disadvantages of using
the Axiom of Choice in a proof of existence is the non—constructive nature of
that proof. In the above situation, this means that we will work with ultrafilters
to construct models without constructing the ultrafilters themselves. Thus the
models whose existence we are proving will remain hidden from us by the veil
of non—constructiveness. However, even their existence has many interesting

implications, as we shall see later.

.e. for all V1,V2 € C, V1 C Vo or Vo2 C Vi. On this occasion, please recall Zorn’s Lemma
(cf. Section ??) since this is the technique of proof used here.
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Next, we want to rephrase the above Lemma|7.1.13|and reduce it to the most

commonly used form. Combining clauses 1. and 2., we find the next lemma.

Lemma 7.1.14 (Existence of Ultrafilters)
Let S be any non—empty set. Then, any family X C P(S) having the f.i.p. is

contained in some ultrafilter &/ O X over S.

A word of warning: In no way is the ultrafilter extending X required to
be unique. This is clear from the observation that any filter contains S, thus
X = {S} is contained in any fixed ultrafilter, of which we find the same number
as there are elements in S, and with this we have not even accounted for the
free ultrafilters.

We are now going to introduce an example for a “construction” of free ul-
trafilters, which is very popular since it gives rise to a great variety of useful
examples of reduced products as will be shown later. For this, we will use the

following definition.

Definition 7.1.15 Let S be any set. A subset 7" C S is called co—finite iff
SN\ T is finite. PeosS :={T C S; T is cofinite}.

Of course for finite sets S, PeotS = P(S). Infinite sets tend to be more

interesting, as we can see in the following example.

Example 7.1.16 Let F be given by F = P.tN. Then, F has the fi.p;
furthermore, F is even a filter, the so—called Fréchet—Filter, over N. (To show
that F is a filter, recall that, by DeMorgan’s Laws,

hNn..NT,=N~N(NNT)U...U(NNT,)).

The rest should present no real problems and is left as an exercise.) Using
Lemma we find that there is an ultrafilter &/ over N with P.tN C Y.

We note that for such a U, (U = 0, since for any n € N, N~ {n} € U, and
already () {N ~\ {n}; n € N}= 0, so any ultrafilter extending the Fréchet—Filter

is a free ultrafilter.

Here is another nice example we will use later, e.g. when formulating and

proving a semantical analog for the Compactness Theorem [2.4.5

Example 7.1.17 For X # 0, let S :={s C X ; s finite} and, for z € X,
T,:={s€S; z€s}
Let F C P(S) be given by F :={T,; x € X}. Then, F has the f.ip., since
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PO

cofinite sets

U

infinite sets with

finite sets

Figure 7.2: A free ultrafilter

clearly {z1,...,2,}C Ty, (i=1,...,n), thus

{x1,. 0, X0 }C Ty, NN Ty,

(As an exercise: Can you tell whether F is a filter or not?)
Using Lemma[7.1.14) we once more find:
There is an ultrafilter & over S with F C U.
Is U fixed or free? Assume U is fixed, i.e for some s € S, s € (| F. This is
equivalent to
seT, forallz € X

and this again is the same as
x € s forall z e X.

This means that s € (|F if and only if s = X. Since s € S is finite, the
above leads to a contradiction if X is infinite. Hence we find, for infinite X, no
s € F 2 U and thus clearly U = . We conclude that if X is infinite,

then any ultrafilter extending F is free.
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7.2 Ultraproducts

We now have all the necessary tools to define ultraproducts. Recall from Sec-
tion the definition of direct and reduced products as well as those of their

associated canonical projections.

Definition 7.2.1 Let £ be a formal language and, for s € S, let Ag be an
|As| is

L—structure. Let U be an ultrafilter over S. The relation ~ on []
defined by

ses

(as; s € Sy~y(bs; s€8) iff {se€S;as=0bs}eU

for any (as; s € 5),(bs; s € S)e€ [[,cq [Asl-

The relation ~y, is an equivalence relation. Reflexivity and symmetry are
trivial to prove, and transitivity follows easily from the fact that U is closed
under intersection. (Exercise: Why?)

Let us now consider the quotient [, ¢ |As|/ ~u and define on it interpre-

ses
tations for the function—, relation— and constant—symbols of £. We will find a

new L-structure, the so called wltraproduct of the family (As; s € S) under U,
which we will denote by [],.q.A/U. For further convenience we will write 7y

instead of 7., for the canonical projection.

Definition 7.2.2 (Ultraproducts of £L—Structures)
The L-structure A = [], g As/U, the ultraproduct of the family (As; s € S)

under U, is defined as follows:

1. Universe:

Al :={my(a); a € [] A}

ses

2. Relations: For a relation—symbol R;, we define

R ((ru(ar), - - s mu(ax@)))
iff
{seS; R ((ms(ar),. .. ms(ax@)))eU
for all ar,...,axu) € [[,eg ] Asl-

3. Functions: For a function-symbol f;, we define

ff(wu(a1)7...,Wu(alt(j))) = 7ru(<f;45(7rs(a1),...,Ws(au(j)) ; s €S))
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for all a1, ...,a,3;) € [[,cq [Asl

4. Constants: For a constant—symbol ¢, we define

et =y (el s € 9)).

Exercise 7.2.3 Verify that this is a valid definition, i.e. show that

1. if ag ~y b, .-y ax)y ~u bagiy, then

R (my(ar), ... mulan)) E R (m(b), - mu(bag)));
2. if ay ~y b1,y au0) ~u b, then

[ mular), - mulau)) = 7 mu®), - mu(bug)-

Simplifying our notation further, we will sometimes use the following nota-

tional conventions for a €[[,cg[Asls, s € S, ultrafilters & and valuations h in
[Lies [Asls:
a(s) :=as :=ms(a) and ay = myl(a),
hs:=mwsoh and hy :=myoh.
In this simplified notation, the definition above would be written as follows:
L |A| :={ay; a € [[,cq |Asl}
As .

2. fjA(allxla ceey au(j)u) ::<fj (alsa veey au(j)s) HERS S>M

3. <a1u, e ,a,\(i)u>€ R‘iA iff {S es; <a18, ce ,a/\(i)s>€ R;AS}G u

4. =(ct s s € S)u

Concerning the valuation it is also worth noticing that

1. for any s € S and for any valuation A’ into Aj, there is a valuation h into
[I,cs As such that hy = h';

2. for any s € S and for any valuation A’ into [
tion h into [[,. g As such that h, = h'.

ses As /U, there is a valua-

One more special case must be mentioned before we can look at some results.

Definition 7.2.4 If for some set S # (), A, = B for all s € S (i.e. all the
factors are the same), then we write B%/U for [], g As /U and call this the

ultrapower of B to S under U.
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Example 7.2.5 Let us have a look at the direct product of linear orders. Let
A be the two—element chain, i.e. A := ({0,1}, <) where 0 < 1. Now, looking at
the direct power B := AV, it is evident that B is not a linear order, since e.g.
(0,1,1,1,...) and (1,0,0,0,...) are not comparable under <5. On the other
hand, if we let U be an ultrafilter over N and C := B/U, everything turns out to
be comparable again. Suppose we find a,b € |B| such that ay < by does not

hold. Then, by the definition of the interpretation of relations in ultraproducts,
{neN;a, <b}¢U,
but since U is an ultrafilter, this is the same as
NN {neN;a, <b,}el,
and this in turn is equivalent to
(neN; a, £ ba}e U,
and finally, since A is a linear order, this means
{neN; b, <a,}lelU,

which, by the definition of <¢, means by <€ ay. So, from the assumption that
ay <€ by does not hold, we proved that by <€ ay; holds. This is exactly the
definition of “linear order”. Thus, we found that our ultrapower of linear orders

is, unlike the direct product, indeed a linear order.

Example 7.2.6 Reconsidering the previous example, we may wonder just how
large this ultraproduct is. Set Theory tells us that the direct product has the
same cardinality as P(N) and is thus uncountable. However, using an argument
very similar to the one we applied to show that C is linearly ordered by <€, we
can show that C is actually rather small: For a € |B| arbitrary, we know (by
the definition of ultrafilters) that exactly one of the sets T, o and T, 1 is in U,
where
Toi:={neNj;a, =14} (i€{0,1}).

Thus,

either az; = (0,0,0,...)y or agy = (1,1,1,.. ).

Also, clearly (0,0,0,...)4 # (1,1,1,...)y. Hence, we have shown that the
universe of C consists of exactly two elements. (The Theorem of Lo$[7.2.11| puts

this result in a wider context. We will see that ultrapowers of finite structures
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are of the same cardinality as their sole factor.)

Example 7.2.7 What is the point of all this? We constructed an ultrapower
and, after musing about this new structure for a few minutes, were able to prove
that we have gained absolutely nothing. However, we constrained ourselves in
two ways: first, by looking at an ultrapower, and second, by taking a finite
structure as the starting point of our venture. (Note that we did not make any
assumptions about U being fixed or free.) This and the next example show that
even dropping one of these limitations is enough to make the ultraproduct differ
from its original structures.
For A take the set of natural numbers N together with the natural order < and
the function 4. Again, let S := N and U be a free ultrafilter over S expanding
the Fréchet-Filter. Let B := AY and C := B/U.
We notice that C is infinite (as is N), since for m,n € N;m # n we have
(mym,m, ..y # (n,n,n,...)y. Yet, something has indeed changed. Remem-
ber that the Archimedean Property of N expresses the fact that any natural
number n can be reached by a consecutive sum of 1’s with just enough sum-
mands:

n< 14+...4+1.

n summands

This property is no longer valid for our ultrapower C; i.e. for example for
a = (0,1,2,...)y, there is no way of writing a as a finite sum of 1’s. This
follows from the fact that

for any m € N, (m,m,m,...)yy <€ (0,1,2,.. )y,
which in itself follows from
{seN; (m,m,m)s <(1,2,3))s}={mm+1m+2,..}elU

by co—finiteness, since {0,1,...,m — 1} is finite. Thus, you could say that C
looks like N with additional infinitely large elements. However, please be aware
that we did not give a first-order formula expressing the Archimedean Property

or its consequence above.

Example 7.2.8 Now let, for s € N, A, := ({0,1,2,...,s}); i.e. Aisan L-
structure for the formal language £ lacking any non—logical symbols. As before,
our index set is N and the ultrafilter I is supposed to expand the Fréchet—Filter.
Let C be the ultraproduct of (A, ; s € N) under U.
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Now consider the following elements of C:

ag = (0,0,0,0,0,.. .5
ar:= (0,1,1,1,1,.. )y
as := 0,1,2,2,2,.. )y
Up = <031727"'7n7lananvn"'>u

(Exercise: Show that those are actually elements of the universe of C.)

With an argument analogous to the one we used in the previous example to
show that a is infinitely big, we can now show that all the a;’s are pairwise
distinct, from which we conclude that we are dealing with an example of an
ultraproduct of finite structures which is no longer finite. Since a finite structure
is never elementary equivalent to an infinite one, we have here an example of

an ultraproduct which is not elementary equivalent to any of its factors.

Examples [7.2.7] and [7.2.§] instantiate the central aspects and motivations

which have led us to consider ultraproducts in the first place:

e By building the “infinitely large” element of the ultrapower of N we entered
the realm of non—standard models of the axioms of the natural numbers.
The proof of Lo§’s Theorem (cf. Appendix [A)) will make it clear
that the difference between N and the non-standard structure provided
by the ultrapower—construction is not a distinction that can be expressed
in First—Order Logic; in other words, First—Order Logic cannot prevent

the axioms of N from having models with infinitely large elements.

e We will later show that an ultraproduct of finite structures can be infinite
and that elementary classes are necessarily closed under ultraproducts.
These observations together yield the following generalization: Suppose
in an elementary class K, we find, for every n € Nx {0}, a finite structure
A, such that A, has at least n elements; from this we can conclude that
there is also an infinite structure in K. In a more concrete example, this
implies that finding an axiomatization of exactly the finite groups in terms
of First—Order Logic is a task that is bound to fail.

Exercise 7.2.9 By using arguments similar to the ones used in the above

examples, show that:

1. The direct product of a family of fields is not necessarily a field. (Hint:

concentrate on the fact that in a field a - b = 0 implies a = 0 or b = 0).
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2. In an ultraproduct of a family of fields a - b = 0 implies a = 0 or b = 0.

We will now turn our attention towards the main result of this chapter,
the Main Theorem on Ultraproducts Although its proof is deferred to
Appendix[A] a few introductory lemmata will be helpful to understand the the
full extent of this result’s implications.

For the relationship between interpretations of terms and the projections,

we note the following Lemma.

Lemma 7.2.10 If (A, ; s € S) is a family of L-structures and C =[] .5 As /U
the ultraproduct of this family under the ultrafilter ¢/, then for any L-term ¢

and any valuation h into [], g As,
L. [hy] = (t°[h))u, and
2. t45[hs] = (tB[h])s for any s € S.

Proof. We proceed by structural induction over the definition of L—terms,

thereby we will deal with both statements simultaneously:

1. e If ¢ is a variable z, then

©lhy] = hyle) = my o h(z)
= (h(@)u = (t°[h])u

and
e [hs] = hs(z) = 75 0 h(z) = (h(x))s = (tB[h])8~

e If ¢ is a constant—symbol ¢, then
t[hu) = & = (i )u = (P [h)u

and
t4:[hs] = ¢ = (cf)s = (t°[h])s.

o Ift = fj(t1,...,t,()) for afunction-symbol f; and L-terms t,...,t,(;),
then
tlhul = f7S [l -t [had)
= s (2 (W)
(by the induction hypothesis)
= (fPELR], - 5 [h]))u
(by the definition of fjc )
= (®[h)u
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and
Helh = FAR I, )
= FAEBIRD, (B 1))
(by the induction hypothesis)
= (FE(BIA, 5 [H)s
(by the definition of fJA)
= (tP[h])s.

Please note that we took advantage of a universal property of the projections
7, and the direct product J] g As:

(rs(a); s € S)=a for any a EH As .
ses
]
We are now going to state the Main Theorem on Ultraproducts. Its proof
is deferred to Appendix [A] because it is rather technical and does not lead to

further enlightment with respect to the theorem or its applications.

Theorem 7.2.11 (Los, Main Theorem on Ultraproducts)

For a formal language £ let (A, ; s € S) be a family of L—structures and U be
an ultrafilter over S. For the sake of readability, let B :=]], g As be the direct
product and A := B/U the ultraproduct of the family (A, ; s € S) under U.
Then, the following two statements hold:

1. For any valuation h into B and for any L£-formula ¢,

A plhy] iff {s€S; As = olhs] e U.

2. For any L-sentence «,

AEaiff {seS; A =aleld.

Proof. Cf. Appendix[A]
]
When applied to free ultraproducts, Lo§’s Theorem states that a formula
holds if it is satisfied in sufficiently many factor-structures. Note that for a
fixed ultrafilter, say U ={U C S; p € U}, the second part of Los’s Theorem

reads as

C = olhy] iff A, = olhs].
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Figure 7.3: Jerzi Lo$ (1920-1998)

A more elegant formulation can be found for the special case of ultrapowers:

Ultrapowers are elementary equivalent to their factor.

Corollary 7.2.12 (Ultrapowers) For any L-structure A, any non-empty
set S and any ultrafilter U over S,

A% U= A.

Proof. If you notice that for any L—formula ¢, T;:‘S/u(go) is either S or @), then

you will not come across any difficulties completing the proof. ]

7.3 The Compactness Theorem Revisited

We are now in a position to present a semantic analogue to the Compactness
Theorem of First—-Order Logic [2:4.5] The following corollary presents a way of
“constructing”P] a model for an infinite set of sentences from the models of its

finite subsets.

Corollary 7.3.1 Let X be a set of L—sentences such that, for any finite © C X,
there is a model Ag of ©. Then, there is an ultraproduct C of the family
(Ao ; © C X, O finite) under some ultrafilter & such that C = X.

Proof. We proceed in small steps that we deliberately do not develop in full
detail to leave room for the readers do do some work of their own. Note that
the index set S for the ultraproduct is chosen to be the set of all finite subsets
of ¥, thus an element s € S is a set, and an element of an ultrafilter over S will

be a set of sets.
e First, we define for a € ¥ the set

So i ={s€8;acs}.

2The quotes are used to express the author’s unease with calling a description based heavily
on the Axiom of Choice a “construction”.
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Thus, S, is the set of finite subsets of % containing «. It follows that, for
A1y, 0p €,
{a1,...,;ap}€ Sy, N...NS,,.

e Now we collect all these S,’s in the set F :={S,; @ € £}. Then, F has
the f.i.p. (we proved this in Example[7.1.17)) and is thus a subset of some
ultrafilter U over S.

e For o € 3 and s € S, we have a € s and thus A, [ a.
e From this we find S, C{s € S; As Ea}leU.
e Finally, by defining C :=]], g As /U, we see that for any a € X, C = a.

7.4 The Upward Lowenheim—Skolem Theorem
Revisited

As was promised in Section [5.4] we will now give an alternative proof of the Up-
ward Lowenheim-Skolem Theorem, which makes use of the technique introduced
in this Chapter.

Please recall from Example[7.1.17] that for every set X, if S := {s C X; s finite}
and, for x € X, T, := {s € S;x € s}, then there is an ultrafilter over S extend-
ing {T,;z € X}.

Theorem 7.4.1 Let £ be a formal language and A € Str £ be infinite. Then,
for any x >|| £ || there is an L-structure B with B = A and card B = &.

Proof. Let ¥ := ThA, and let Ay be an L-structure with Ay = A and
cardAg <|| L ||. (Ag exists by the Downward Lowenheim-Skolem Theorem
5.3.1]) Let C := {co; 0 < K} be a set of distinct constant symbols not already
in £, and let £’ be £ with these new constant symbols added. (From the
notation it should be clear that the set C has cardinality k). Moreover, let
I’ C Sen L’ be given by

Ii={-cy =cpa<fB <k}

and ¥’ := X UT. Now define S := {s C S; s finite}.

Since any finite subset of ¥’ can contain only finitely many of the inequalities
in ', and these finitely many inequalities can be satisfied simply by choosing
different interpretations for the constant symbols involved (and arbitrary in-

terpretations for those constant symbols that are not in the inequalities), it
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follows that for any s € S, there is an £'-structure Ay, which has the same car-
rier as A but carries additional interpretations for the constant symbols which
appear in I" but do not belong to £, such that A, is a model for s. Setting
T, :={s € S;a € s} for o € ¥’ and letting B be the ultrapower

B:= ] Asu

seS

where U is an ultrafilter over S extending the set F := {T;a € ¥'}, we see
that B = %'.
Indeed, if @ € &', then A; = « for all s € T, and T, € U, hence

{seS;As=a} CT, el

and, therefore, {s € S; A; = o} € U. From Theorem we know that this
implies B = «. Because a € ¥’ was arbitrary, B is a model for ¥/ and thus has
at least x elements (the interpretations of the new constant symbols; cf. Lemma
. If B has too many elements (i.e. if card B > &), we apply the Downward
Lowenheim—Skolem Theorem to find B’ of the desired cardinality. ]

Exercise 7.4.2 In the proof of Theorem |7.4.1] explain how the L'-structures
A have to be defined (w.r.t. the interpretations of the new constant symbols).

Explain in more detail why they exist.



Chapter 8

The Semantical
Characterization of

Elementary Classes

Elementary classes were defined in Definition using syntactical notions. In
this chapter we are looking for a more direct characterization in the sense that

we are trying to avoid using any reference to theories.

8.1 Ultraproducts in Elementary Classes

A first step is to show that elementary classes are closed under ultraproducts,
or, to put it in the form of a negative result, that a class of L—structures that
is not closed under ultraproducts is never axiomatizable by a set of first—order
sentences.

Remember that we have already verified that elementary classes are closed
under elementary equivalence. We now ask if the converse is also true, i.e. if
every class of L—structures which is closed under elementary equivalence is also
an elementary class. Looking at the following very basic example will not reveal
the answer directly, but it will give us a hint on where to look for a counter—
example.

Let K be the class of all finite sets, which are considered as a class of £-
structures for the (unique!) formal language without any extra non-logical
symbols. According to the definition of elementary classes, one way of showing
that K is elementary would be to provide an axiomatization for K. Yet, as hard
as we try, we eventually fail to find an appropriate set of axioms. This in itself is

clearly not a proof of K not being elementary, but it reveals a basic asymmetry

95
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between being a model of a set ¥ of sentences and not being a model of ¥. The
asymmetry we are hinting at is not really an asymmetry as long as we require X
to be finite. For infinite sets ¥ however, K being the class of models for ¥ means
that every structure in K satisfies every sentence in 3, whereas for Str £ \K,
a similar formulation would be that the structures in Str £ \K are violating at
least one sentence in X.

Before drowning in abstract elaborations, we better present a model class
which exemplifies these observations:

Let Set>,, be the class of infinite sets. From First-Order Logic, we remember
that for any n € N there is a sentence «,, which is satisfied in a structure .4
if and only if the universe of A has at least n elements. (This holds true
regardless of the language £ under consideration; we may thus assume L to
be as above, a formal language without any non-logical symbols.) Being an
infinite structure is then equivalent to being a model of the set ¥ ={«,, ; n € N},
whereby we see that Set>,, is indeed an elementary classﬂ The complement of
Set>,, contains all finite structures. Being a finite structure means not satisfying
all the sentences in X, i.e. violating at least one of them. Hence, we are in the
rather uncomfortable position where one class of structures is well captured by
the notion of satisfaction of a set of sentences, whereas for the complementary
class, this feat does not work, since we lack the same elegant way of expression.
Satisfaction of a set X of sentences expresses the simultaneous satisfaction of
each sentence in the set (which can be viewed as an “infinite conjunction”),
whereas the failure to satisfy ¥ amounts to violating at least one sentence in 3.
What we need is a formalization of failure which is on a par with the “infinite
conjunction”. But this would have to be some sort of “infinite disjunction”
which, unfortunately, we do not haveE|

We will show later that, for finite sets of sentences, the class of non—-models
is equally well describable. This will lead us to the notion of basic—elementary
classes.

The first steps towards a semantical rephrasing of the termin “elementary
class” are the following observations. First, remember that every elementary
class is closed under elementary equivalence = (cf. Lemma . We also
mentioned that the converse is false, i.e. there are classes of structures which
are closed under elementary equivalence, yet they are not elementary. For the

time being, however, we are not in the position to give such an example.

It may be confusing that the notion of “infinite”, i.e. not finite, is the positive notion in
the context of this example, while finite will be the negative counterpart. This stands in a
refreshing contrast to all the finitist approaches to logic.

2This lack of symmetry between validity and its contrary is rooted already in the notion
of deducibility, where we deal only with deducible sentences, as for non-deducibility, we are
rather helpless before we are equipped with completeness—theorems. Also, compactness is
formulated only for the positive case.
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Our second observation is expressed in the following lemma.

Lemma 8.1.1 Every elementary class is closed under ultraproducts.

Proof. Let {A; s€ S}C Mod¥ and B :=[[,.4As /U be an ultraproduct
under the ultrafilter U over the index set S # (). Then, for any a € 3, we have
{s € S;As Ea} =5 €U and thus B E a. We conclude B € Mod X. |

Thus, being closed under elementary equivalence and ultraproducts is a nec-
essary condition for a class being elementary. Is this condition sufficient?

Assume we would like to find a proof for this. Our next step would be to
show that a class K of L—structures that is closed under elementary equivalence
and ultraproducts is elementary, that is to say, it satisfies K = Mod ThK. From
14 we already know that K C Mod ThK, thus we “only” have to show that
Mod ThK C K. Let us assume that K is closed under elementary equivalence
and ultraproducts and let B € Mod ThK. How can we tell whether B € K or
not? Using assumptions we made on K, a good try would be to show that B is
elementary equivalent to the ultraproduct of a family of structures we already
know to be in K. But in order to do so, we have to know more about the
structures in Mod Th K.

The next lemma shows a few similarities to the semantical formulation of
compactness. It claims that finite parts of theories of models in the smallest

elementary class extending K are already modeled in K.

Lemma 8.1.2 Let B € Mod ThK. Then, for any finite © C Th B, there is
Ao € K with Ag ': .

Proof. First, note that the assumption B € Mod ThK implies that ThK is
consistent and thus K # (.

Now, © being finite means that ® = 0 or © ={ay,...,a,}C ThK for some
neNn>1.

If © = (), then any A € K is a model for ©.

If © # (), we proceed by reductio ad absurdum, i.e. we assume that for no A € K,

A = ©, and from this deduce a contradiction as follows:
If for no A € K, A = 0O, then

for every A e K, A= (a1 AL A aw),

S0
(a1 A...Nay) € ThK

and thus, since B € Mod Th K,

Bl (o Ao Aay).
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On the other hand, since © C Th B and Th B is deductively closed, we have
BEoa Ao Aoy,

which is a contradiction. ]
From here we follow a route similar to the one described in the proof of the
semantical formulation of compactness and try to find an ultraproduct built
upon these models of finite subsets of the theory of B, hoping that this ultra-
product is elementary equivalent to B.
Please recall the result from Example[7.1.17] which is indeed a proof for the

following lemma.

Lemma 8.1.3 Let ¥ C Senf, S :={0 CX; O finite}. For a € X, let
T, :={© € S; a € ©}. Then, there is an ultrafilter U 2{T, ; a € T}.

Proof. Follows immediately from Example [7.1.17} [

Now we are ready to prove the following lemma.

Lemma 8.1.4 If K C Str £ is closed under elementary equivalence and ultra-
products, then Mod ThK C K.

Proof. Let B € Mod ThK. According to [B:1.2] we find that for any finite
© C ThB, there is an Ag € K with A = ©.

Now, let S :={© C ThB; O finite}, for « € ThB let T, :={©@ € S; a € O}
and finally F :={T, ; a € Th B}.

Using (and the Axiom of Choice!) we obtain a family (Ag ; © € S) such
that Ag | © for all © € S, and by Lemma we know that there is an
ultrafilter U over S whith F C U.

Thus, we set C :=][gcg Ao /U to be the ultraproduct of (Ae ; © € S) under
Uu.

Take any o € Th B. Then, for © € S with a € © we have Ag = a, so

Ao E a for all © € T,
whence T, C{O € S'; Ag | a}, and since T,, € U, we conclude that
{©eS; Ao Ealeld

und thus C = . Thus, Th B C Th(, and by Corollary we conclude that
B=C.

Thus, we have found an ultraproduct C of structures Ag € K which is ele-
mentary equivalent to B. However, since K is closed under ultraproducts and

elementary equivalence, we conclude that B € K. [
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The main result of this section simply follows by putting everything together.

Theorem 8.1.5 (Elementary Classes) For K C Str £, the following are equiv-

alent:
(i) K is an elementary class.
(ii) K is closed under elementary equivalence and under ultraproducts.

Proof. If K is an elementary class, then, by Lemma [4.1.12] K is closed under

elementary equivalence and, by Lemma [8:1.1] it is also closed under ultraprod-

ucts.
If K is closed under elementary equivalence and ultraproducts, then, by
Mod ThK C K and, by [£.1.4] K C Mod ThK, thus K = Mod ThK. ]

This is as good a semantic characterization of elementary classes as we can
find with the means provided in this module. Actually, to entirely discard all
syntactic notions in the characterization of elementary classes we must find a
semantic description of elementary equivalence. Below we will state a result
(without proof) which provides the necessary and sufficient conditions for a
class to be elementary in purely semantical terms relying on the notions of
ultraproduct and isomorphism. For the time being, we have to make do with
ultraproducts and elementary equivalence, with the latter still firmly rooted in

syntax.

Notation 8.1.6 For a class K of L—structures, let
Kgy, :={A € K; |A] is finite},

and consequently
Kipf :={A € K; | A] is infinite} .

Example 8.1.7 Let £ be the trivial language containing no non-logical sym-
bol| so L-structures are sets with no extra relations, functions or constants.
For n € Nlet A :={0,...,n}, so every A, is an L—structure with exactly n+ 1
elements. Let ¢ be an ultrafilter over N and C :=[], .y An /U.

For each n € N let a;, be an L—sentence holding in an £-structure A if and only
if |A| has exactly n + 1 elements. (Exercise: Find examples of such sentences!)
Then, for each n € N,

{seN; A; Ea,}={n} €U

3Remember that the non—logical symbols are given by the index sets I, J and K and the
arity—functions A and p which characterize £. If a formal language £ contains no non-logical
symbols, these index sets are all empty and consequently A = u = @) as well. This justifies the
formulation “the trivial language” instead of “a trivial language”.
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and thus C £ ay,. It follows that |C| is infinite (since |C] is obviously not empty).
Using these observations we can conclude that Str Lg,, is not closed under ul-

traproducts and thus not elementary.

Exercise 8.1.8 Analyzing the above argumentation, find a way to show that
for any language £ and for any K C Str £ one finds that:
If for any n € N there is a A € Kg,, with card |A] > n, then Kg,, is not

elementary.

Please note that by constructing an infinite model as an ultraproduct of a
family of structures whose cardinalities are finite but without upper bound in

N we implicitely proved that

there is no set of sentences ¥ such that (1) ¥ has only finite models

but (2) there is no upper bound for the cardinalities of models of X.

Also, by using the upward direction of the Lowenheim—Skolem Theorems,

Theorem [5.4.3] we may conclude that

if there is no finite upper bound for the sizes of finite structures in
some elementary class, then there is no upper bound at all to the

cardinalities of the structures;
i.e.

if, in a given elementary class K, for every n € N, there is a finite
structure A € K with card | A| > n, then there is, for any cardinal
k, a B € K with |B| > k.

Example 8.1.9 Let £ = {+,—,-,0,1} be the language of rings and fields and
let F be the class of fields with characteristics different from 0. Then, F is not
elementary, as shows the following argument (which exhibits several analogies
to the above example):

First, we remember that the characteristic of a field is either a prime number
or 0, that Z, is a finite field for p € N prime and that clearly the characteristic
of Zy, is p.

Then, we set S :={p € N; p prime}. S is infinite and thus there is a free ultra-

peS Zy JU.
Since being a field is expressible in terms of (finitely many) L-sentences, C is a

filter U over S containing every co—finite subset of S. Now, let C :=[|

field by Los’s Theorem. Yet, by the very same theorem, the characteristic of C

cannot be a prime and thus must be 0.
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Exercise 8.1.10 Work out the details to Example [8.1.9}1%|
We conclude that

The class of fields having characteristic different from 0 is not closed

under ultraproducts and thus not elementary.

If we recall that being an elementary class means being axiomatizable by a
set of L—sentences, we see that the above examples provide classes of models

which are not fully describable in First—Order Logic.

Example 8.1.11

Let £ be the language equipped with a binary function symbol +, a binary
relation symbol < and the constant symbols 0 and 1. Consider the L-structure
N := (N,+,<,0,1) with the obvious interpretations of the symbols and let
K := Mod ThN. Then, K is elementary by definition and thus closed under
ultraproducts. However, as we saw in the ultrapower NN /i/ under a free
ultrafilter & does not have the Archimedean Property of N and has elements
exhibiting the behaviour of “infiniteness”. Yet, clearly NY/U/ is a model of
ThN. This is what is sometimes expressed by the following statement:

Every first—order axiomatizatiorﬂ of N has non-standard models.

To sum up, so far we used ultraproducts in two ways: One was to show that
some classes are not elementary, and the other was to show that some elementary
classes contain non-standard structures. A third application of ultraproducts
now follows. Ultraproducts can be used to characterize the complement class of

an elementary class.

8.2 Ultraproducts in Basic—Elementary Classes

Basic—elementary classes provide (partial) answers to quite a few questions you

may or may not have asked yourself.

e Since an elementary class is just the class of models of some arbitrary set of

sentences, what happens if we restrict ourselves to finite sets of sentences?

4Note that for a given p “being of characteristic p” is expressible as an L-sentence. Also,
note that in order to express “having characteristic 0” in first—order logic, we need an infinite
set of L-sentences, but this we will only be able to proof once we introduce the notion of
basic—elementary classes.

5 Another “detail” should be mentioned here. Clearly such an axiomatization of N (by first—
order sentences) consists of infinitely many sentences. As Godel proved in the early 1930s,
such an axiomatization is inaccessible to a systematic approach in the sense that it is never
recursive. So, although we very much believe that there are axiomatizations (e.g. ThN itself),
we will never fully grasp the form of such an axiomatization (provided Church was right when
he claimed that “recursive” and “computable” are one and the same — but that is another
story and part of the theory of recursive functions).
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e What do maximally proper elementary classes look like?

e An elementary class K is a class of L-structures axiomatized by a set of

L-sentences. Is there an equally elegant description for Str £ ~\K?

At the end of this section the reader will hopefully have found answers to
these questions. As it turns out the best way to access these problems is by

starting with the first question.

Definition 8.2.1 A class K C Str £ is called a basic—elementary class if

K = Mod{a} for some L—sentence .

Basic—elementary classes are obviously elementary. Moreover, the restriction
that K be axiomatized by a single sentence can be weakened, as we can see in

the following Lemma.

Lemma 8.2.2 K C Str £ is basic—elementary iff K = Mod X for a finite ¥ C
Sen L .

Proof. This is a simple consequence of

Mod {a1,...,a,}=Mod{ay A ... A a,}.

Example 8.2.3 There are a lot of examples for this in “everyday math experi-
ence”, e.g. the class of fields, rings, groups etc. since they are each characterized
by a finite set of axioms.

Clearly, ) and Str £ are basic—elementary as well. (As an exercise: Can you
tell why?)

Now we want to take a closer look at the complementary classes of basic—

elementary classes.

Lemma 8.2.4 If K C Str £ is basic—elementary, then so is Str £ ~\K.
Proof. Let K = Mod{a}, @ an L-sentence. Then, for any A € Str L,
AeStrL~K if A¢gK

iff AFa

it AE-a
if A e Mod{—a}.

Thus, Str £ \K is basic—elementary. [
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So, if a class of L—structures is axiomatized by a single sentence, its comple-
ment class is axiomatized by the negation of this sentence. Using finite set of
sentences instead of a singleton set, this last sentence generalizes to the following

statement:

If a class of L—structures is axiomatized by a finite set of sentences,
then the complementary class is axiomatized by ... (Exercise: Com-

plete this statement!)

Returning to merely elementary classes we note that basic-elementary classes

are elementary classes with elementary complement—classes. Does the converse
hold as well? Theorem confirms this.

Theorem 8.2.5 (Basic—Elementary Classes)
K C Str L is a basic—elementary class iff both K and Str £ ~\K are elementary

classes.

Proof. By Lemma if K is basic—elementary, then so is Str £ ~\K. Since
basic—elementary classes are elementary, K and Str £ are both elementary.

So it remains to prove the converse.

Assume K and K := Str£~K are both elementary classes. If K = ) or
K = Str £, then K is basic—elementary as we have seen in the examples.

So, without loss of generality, assume K # () and Str £L~K # . Let ¥ and
X be the axiomatizations of K and Str £ \K, respectively, i.e. K = Mod X and
K = Mod X.

Since ) = Mod ¥ N Mod X = Mod (X U X)), completeness implies that ¥ U X
is inconsistent. By applying the Compactness Theorem we find a finite
Yo C ¥ UY which is already inconsistent.

Now let A := ¥g \ 2.

Since Y is inconsistent, ¥y € X would imply ¥ inconsistent and thus K =
Mod ¥ = 0. So we conclude A # 0, A ={61,...,0,}.

We claim that A € Mod X iff A = A.

For sufficiency, let A € Mod ¥ = K and assume A = A. Then, A = X UA,
thus A € Mod(X U A) C Mod Xy = (), a contradiction.

Conversely assume A = A. Then, A £ 3, since A C . But this means
A& ModX, so A€ StrL~ModX = Mod X.

Thus, we conclude that K = Str £~ Mod A is the complement of a basic—
elementary class, thus, by Lemma[8.2.4] K is basic—elementary. [

Hence, if we were really able to provide a purely semantical description of
elementary classes (which we are not, since we have not discarded “elementary
equivalence” yet), we could equally well describe finitely axiomatizable classes

of structures by semantical notions. However, the above will do for the moment.
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Without mentioning elementary classes, we can formulate the result from
Theorem [8.2.5] in the following corollary.

Corollary 8.2.6 K C Str L is a basic—elementary class iff both K and Str £ ~\K
are both

e closed under elementary equivalence = and

e closed under ultraproducts.

In the proof of Theorem (Basic-Elementary Classes) we implicitely
applied a direct consequence of the Compactness Theorem [2.4.5 which deserves

being stated in its own right.

Lemma 8.2.7 (The Covering—Lemma:)
Assume X, 0 C Sen £ with

Mod ¥ C U Mod a.
ac®

(Uaco Mod a is a covering of ModX.) Then there are ay,...,a, € © such
that
Mod ¥ C Moday U...UModay, .

Exercise 8.2.8 Prove the Covering Lemma.
(Hint: Note that Mod ¥ C |J,cq Mod a iff Mod ¥ N[, co Mod ~a = ).)

Example 8.2.9 For £ the trivial language, we saw in Example [8.1.7] that
Str Lg,, is not closed under ultraproducts and thus is not elementary. So

Str L ¢ = Str L\ Str Lg,) is clearly not basic-elementary. Still, Str L ¢ =
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Str L\ Str Lg,, is elementary, as you will have no trouble showing by finding an
appropriate set of sentences ¥ which is satisfied in a L-structure if and only if
the structure has an infinite universe. (Exercise: Do sol!)

Thus we observe for the trivial language £ that the class of finite L—structures
cannot be axiomatized at all. The class of infinite L-structures can be axioma-
tized, but not by a finite set of L—sentences.

Please note, we did not claim that there are no theories with only finite models.
What we did say is that given a set of sentences whose model—class contains
exclusively finite models, there is an n € N such that every model in this class
has at most n elements. (Exercise: We are quite sure you will have no trouble

finding such a set of sentences which has only finite models.)

Example 8.2.10 For £ = {+,—,-,0, 1}, the language of rings and fields, we
saw in Example [8.1.9] that the class I of fields with characteristic different from
0 is not elementary. Again, we can easily confirm that Str £ \F is elementary.
So we conclude that although e.g. the class of all fields is finitely axiomatizable

the subclass of fields with characteristic 0 is not finitely axiomatizable.

We now turn our attention to the question about maximally proper elemen-

tary classes. The first result is obvious.

Lemma 8.2.11 Any elementary class is the (class—)intersection of basic-elementary

classes.

Proof. This is a simple consequence of
Mod ¥ = (") {Mod¢; ¢ € B} .

]
From this we conclude the following characterization of basic—elementary
classes and provide a partial answer to the second of the above questions: "What

do maximally proper elementary classes look like?"

Corollary 8.2.12 If K C Str £ is an elementary class which is maximal among
the proper, elementary subclasses of Str £ (i.e. Ky elementary and K C Ko #
Str £ implies K = Kj), then K is basic-elementary.

Proof. We prove the contraposition. If K is elementary but not basic—elementary,
then ) # K # Str £, so ThK € ThStr £, since otherwise K = Mod ThK D
Mod Th Str £ = Str L.

Now take any o € ThK \ Th Str £. Then,

K = Mod ThK C Mod « (as {a} € ThK).
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Moreover, Moda # Str L since otherwise &« € ThModa = ThStr £, which
contradicts the choice of a. Thus, Mod « is a basic—elementary class Ky with
K g Ko g Str L. ]

Remark 8.2.13 Generally the converse of Corollary [B:2.12is not true, as the
following example shows.

Let £ be the language with one unary function—symbol s and one constant—
symbol 0. Forn € N, n > 1, let t,, € Tm L be defined by

t1:=s(0) and tpq1:=s(tn).

Let ¥ :={a, ; n € N} where o, := —t, = 0 and let 5 := Va—s(z) = 0. For
n € N let A, be the L-structure with universe Z, and s4»(m) := m + 1.
(This justifies the choice of s for the function symbol as an abbreviation of
“successor”.) Let A be the L-structure with universe {k € Z; k > —1} and

again the successor function as the interpretation of s. Then, we claim that

1. %, thus Mod 8 C Mod %;

2. there is an ultraproduct of (A, ; n € N) which is a model for ¥ while each

A, is not;
3. Mod ¥ is not basic-elementary.

Thus Mod (8 is a basic—elementary class which is properly contained in the

elementary but not basic—elementary class Mod X.

Exercise 8.2.14 Fill in the details of the proofs of the claims stated in the

above remark.

We have seen that the basic-elementary classes are exactly those elemen-
tary classes whose complement—class is elementary as well. Moreover, maximal
elementary classes are basic—elementary.

Now we draw one more conclusion by combining our knowledge about basic—

elementary classes with the Downward Lowenheim—Skolem Theorem [5.3.1

Theorem 8.2.15 In every non—empty basic-elementary class there is a count-

able structure.

Proof. (Sketchy) If K is basic-elementary, then K = Mod« for some £-
sentence «. Since sentences are finite concepts, only finitely many non-logical
symbols from £ occur in .. Let Ly be the sub—language of £ comprising exactly

these symbols. Then « is an Ly—sentence as well, and clearly every L—structure
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A may be easily made into an Ly—structure simply by forgetting the interpre-
tations of the symbols from £ which do not belong to L£y.Conversely, every
Lo—structure can be viewed as an L-structure if we add arbitrary interpreta-
tions for the non—logical symbols, which does not affect the satisfaction of « or
the cardinality of the structure. Moreover, every L-structure is a model of « iff
it is so as an Ly—structure. From the Downward Lowenheim—Skolem Theorem
[(.3.1] we know that there is a countable Ly-structure which is a model for «,

but this model can be extended to a model in K. [ |

8.3 Discarding =

Our original task of expressing closure properties of semantical classes without
using syntactical concepts is not yet completely accomplished since we make
extensive use of elementary equivalence. In this section, we finally want to show
a way of using semantical concepts exclusively for working with elementary
classes. However, we will not be able to give the proof of the main result, since
this lies beyond the scope of this lecture.

Still, half the work is already done, since we showed in Theorem that
for any two L—structures A and B, if A and B are isomorphic, then they are

elementary equivalent:
if A= B, then A= 5.

The following main result we are now going to state should give you an idea

of the importance of ultraproducts in model theory.

Theorem 8.3.1 (Elementary Equivalence via Isomorphism) Let .4 and

B be two L—-structures. Then the following are equivalent:
(i) A=B.

(ii) For some index sets I and J and ultrafilters & over I and V over J,

Al ju=B’/v.

This means that two structures are elementary equivalent iff they have iso-

morphic ultrapowers.

Proof. To show that (ii) implies (i) is not difficult and is thus left as an
exercise. The converse, however, is rather complex and the reader is referred to
the literature. ™

We use Theorem to finally prove the following corollary, the objective

of our endeavour.

Corollary 8.3.2 For K C Str £, the following statements are equivalent
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(i) K is an elementary class;

(ii) K is closed under isomorphisms and ultraproducts, and Str £ \K is closed

under ultrapowers.

Proof. Both directions rely on Theorem by which K is elementary iff K
is closed under elementary equivalence and ultraproducts.

(i) implies (ii): If K is an elementary class, then K is closed under ultraprod-
ucts (by Theorem [8.1.5)). Moreover, if B = A € K, then B = A by Theorem
so B € K (by Theorem . Thus, K is closed under isomorphisms.
Moreover, if A! /e K for some ultrapower A’ /U of A, then A € K, since
A" U= A and K is closed under =, so contraposition shows A’ /¢ K whenever
A &K, ie. Str LK is closed under ultrapowers.

(ii) implies (i): Assume K is closed under isomorphisms and ultraproducts,
and Str £ \K is closed under ultrapowers. By Theorem[8.1.7] all that remains to
be shown is that K is closed under elementary equivalence. Assume B = A € K.
By Theorem there are isomorphic ultrapowers A’ /U of A and B’ /V of B.
A /U e K by the premise, so B’ /Ve€ K since K is closed under = by the premise
as well. Now, if B € K, then B € Str £ ~K, but then also B’ /Ve Str L \K by
the premise. This is a contradiction. We conclude B € K, i.e. K is elementary
according to Theorem [8.1.5 [

For basic—elementary classes, the criterion is even simpler.

Corollary 8.3.3 For K C Str £, the following statements are equivalent

(i) K is a basic—elementary class.

(ii) Both K and Str £ ~\K are closed under isomorphisms and ultraproducts.

Proof. As an exercise combine Corollary and Theorem to prove the
claim. [
We find that (basic) elementary classes can be described using only the

semantical notions of ultraproducts, ultrapowers and isomorphisms.



Chapter 9

Universal Algebra

The word “algebra” carries different meanings in mathematics: First of all, it
stands for one of the large fields into which mathematics is commonly divided, at
the same level as geometry or analysis. Then, it also names a very specific sort
of mathematical structure, namely vector spaces with a multiplication defined
for their vectors; a prime example is the set of complex numbers, thought of as
a vector space over the reals.

Starting with this chapter, we will use the term “algebra” for a concept sit-
uated at an intermediate level of generality. We will use it for a set equipped
with some specified operations. Since Model Theory is the main subject of this
lecture, we shall root the notion of a (universal) algebra within the realm of
structures (and languages). Later we will gradually abandon the Model Theo-

retic approach and treat algebras as a fundamental notion.

9.1 Algebras

Looking at structures for a formal language the way we did, we roughly had four
components characterizing a structure: Its universe, its constants, its functions
and its relations. The exertions with the Lowenheim—Skolem Theorems showed
that relations play an entirely different role than the rest of the semantical
components making up a structure. To be the universe of a substructure a
subset has to comply to certain closure-conditions concerning the constants and
functions, the relations however are simply imposed on the smaller structure by
restriction. This aspect is even more emphasized when we deal with structures
lacking any relations. These are called (universal) algebras. At first glance,
the definition looks quite different from the definition of a structure, but, as we
will see, these divergences are marginal and cannot really obscure the common

origin of the two concepts.

109



110 CHAPTER 9. UNIVERSAL ALGEBRA

Definition 9.1.1 A type ¢ consists of a family ¢t =(ry ; s € S) of nonnegative
integers rg, together with a family (over the same index set S) (fs; s € S) of

operation symbols. r; is the arity ar(fs) of fs.

There is nothing remarkable about this definition, except for the fact that
we did not exclude S = @, nor rs = 0. The significance of this will become clear

after the next definition.

Definition 9.1.2 If ¢ =(r;; s € S) is a type, then a (universal) algebra
A = (A; fA),cs of type t consists of a set A, the universe of A, and a
family (ff‘ ; s €5) of functions fSA : A" — A, the so called fundamental

operations of A. Algebras of the same type are called similar.

Since we are concerned exclusively with universal algebras in this module,
the attribute “universal” will be dropped in most cases. The same goes for
“fundamental” as far the operations of A are concerned. Moreover, if the algebra
A is clear from the context, the operation symbol f; and the operation fiA will
be used interchangeably.

Many of the popular examples presented in this chapter will be of finitary
character, that is, the index set S of the type (and thus the type itself) will be
finite. If this is the case, say ¢ :=(r1,...,7,), we will denote algebras A of type
tin the form A = (A; f, ..., fA). Some of our key concerns for this lecture
are examples and case studies, and these examples typically deal with algebras
having very few fundamental operations.

In the light of the introductory remarks above, we see that the type fixes a
formal language £ such that an algebra A of this type is nothing less than an
L—structure. This justifies adopting many of the conventions and notations for
structures to algebra. We will, for example, call an algebra finite if and only if
its universe is finite. Denotationally, we distinguish algebras from structures in
that we denote algebras by boldface roman letters A, B, whereas structures are
denoted by calligraphic letters A, B.

Of course, languages L for algebras are devoid of relation symbols. Con-
sequently, we will call such a language a functional language. Thus, given
any functional language £ we find that all L—structures are algebras. On the
other hand, any type gives rise to some functional language. This language,
although not uniquely determined, is still fixed in the sense that there is a strict
correspondence of function— and constant—symbols and the arities involved of
any two such languages. Consequently, we will address such a language as the
underlying language of a type or of an algebra or of a class of algebras of

common type.



9.1. ALGEBRAS 111

The special role of nullary operations (i.e. operations having arity 0) will

become clear in the following remarks.

Remark 9.1.3 The definition just given looks very general — which is quite
fitting for the notion of a universal algebra. However, it is the product of several

deliberate choices:

1. By not excluding n = 0, we allow a set A with no operations at all to be

an algebra.

2. The set A may be empty according to our definition. This is handy in most
cases, but may require some care as exhibited below and clearly stands in

contrast to the definition of £-structures.

3. By allowing non-negative integers as arities, we include the possibility
r; = 0 for some i. What is an operation of arity 07 In Set Theory , A" is
constructed as the set of all maps from {0,...,r; — 1} into A. If r; = 0,
this becomes the set of all maps from () into A. Thinking of maps as sets
of ordered pairs, there is exactly one such map, namely () (not depending

on A being empty or not!); in other words. A° = {()}.

Consequently, an operation of arity 0 is a map f : {#} — A. Now if
A #£0, f is completely determined by f(f) € A. Summing up, operations
of arity 0 may be identified with elements of A, called constants or des-
ignated elements in this context — provided that A is not empty. If
A = (, there exist no maps from {@)} into A, so an empty algebra cannot
have any nullary operations. (In fact, in an empty algebra only very few

operations are possible. Which one?)

4. Restricting arities to integers excludes operations taking infinitely many
“inputs”. This restriction to so-called finitary operations is standard
practice and does not affect the topics we will discuss in this module in

any way.

5. Operations as defined in [0.1.2] are defined for every tuple of elements of
A (of the correct length). This excludes so-called partial algebras where
maps fs : D — A are admissible as operations for arbitrary subsets D C
A"s. The theory of partial algebras is well beyond the scope of this lecture;

the interested reader is referred to further literature.

We will now consider a preliminary batch of examples in order to sketch the
scope of Definition [9.1.2] With one notable exception, most of the algebraic

structures encountered in any undergraduate curriculum fit neatly in the frame
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of Definition [0.1.21 In familiar situations we use the conventional infix notation
in place of both f, and f2.

Example 9.1.4 1. Any group G is an algebra G of type (2,1,0) with G =

-1

(G;-,71 e), - denoting multiplication, inverses and e the neutral ele-

ment.

2. Another algebra S of type (2,1,0) is obtained by choosing the power set
P(X) of some fixed set X as universe S, set intersection N as operation
of arity 2, set complement ¢ with respect to X as operation of arity 1 and
() as constant, thus S = (S;N,¢,0).

Comparing these algebras with groups, we see that similar algebras need

not be very similar in the nontechnical sense of the word.

3. Among all algebras of type (2,1,0), groups may be characterized by the

familiar group laws

(A) (w-y)-z=z-(y-2)
(N) z- ==z

e—=e-x

requiring that - be associative, that e acts as neutral element and 2~ as
inverse element for x with respect to -. Such “laws” specify a subclass of a
given class of algebras of a given type, and they present an axiomatization

of this class as a (basic—)elementary class (cf. Section 77).

4. Any group G may also be viewed as an algebra of type (3) with a ternary

L. 2 where - of course

operation m defined on G by m(z,y,z) := -y~
denotes the original multiplication operation which comes with G. The
question arises naturally whether one may find group laws formulated
exclusively in terms of m which characterize groups among all algebras of

type (3). (Exercise: Answer this question.)

5. Any (unitary) ring R = (R; +, —, -, 0, 1) is an algebra R of type (2,1, 2,0, 0),
where + denotes addition, — additive inverses, - multiplication, 0 the ad-

ditive and 1 the multiplicative neutral element.

6. A combinatory algebra is an algebra X = (X;-, K, S) of type (2,0,0) sat-
isfying (K-2)-y=yand ((S-z)-y)-z2=(x-2)-(y-2). Since the binary
operation - in combinatory algebras need not be associative nor commu-
tative, we will use such algebras mainly to produce unfamiliar examples
or counterexamples. They originate from logic and provide a more alge-
braic counterpart to A—calculus. (For more on the subject of combinatory

algebras and A—calculus the reader is referred to the literature.)
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7. The one familiar algebraic structure missing from our list of examples is
that of a vector space. While vector addition is an ordinary binary oper-
ation on V, everything becomes a little less finitary than in the above ex-
amples if the vector space we try to present as an algebra is a vector space
over an infinite field F'. Then we need a unary operation f, : V — V
given by f.(v) := zv , for any x € F to express scalar multiplication of
the vector v € V by the scalar x € F.

The next example is rather special, first, in the sense that it mixes different
topics (syntax and semantics, algebras and languages), and second, in that it
presents a rather elegant way of demonstrating an algebraic access to logic and

model theory.

Example 9.1.5 If £ is a formal language, we get an algebra T, by choosing
as the universe the set Tm £ of all L-terms, and as operations ij the process
of building a composite term f;(t1,...,t,;)) from the terms ¢y,...,¢,;). So
f]T(tl, oo tuy) = fi(ty, ... tugy), and the resulting algebra could (misusing
the notation only very slightly) be written as

T :=(TmL; fj, ck)jesrex-

In the same vein, consider the set Fml £ of L—formulae. Again, we could look
at the process of composing formulae to more complex ones as a fundamental
operation on Fml £, thus regarding Fml £ as an algebra F. F would then, at
least for the approach to formal languages chosen in this lecture, have one binary
operation (A), one unary operation (—) and countably infinite unary operations
(Y, for all n € N).

The approach to algebras treated in these two examples relates closely to the
term—structures for building syntactical models. Consequently, algebras thus
defined are often called term—algebras and they share an important universal
property: They are freely generated by some set of generators. Some more

details on this subject are to follow in Section ?7.

9.2 Homomorphisms

Homomorphisms, isomorphisms and related notions were already introduced in
the context of structures in chapter [£.4] We are now in the somewhat easier
situation where we can disregard relations, which may or may not be preserved
by a potential homomorphism. Definition thus simplifies to the following

Definition:
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Definition 9.2.1 Let A = (A; fA),cs, B = (B; fB),cs be two similar alge-
bras. A map n : A — B is a homomorphism from A into B iff for every

s € S and every rg-tuple aq,...,a,, of elements of A

n(fAar,. . a.) = (Boa),. .. n(an)).

A is called the source (or domain) and B the target (or co-domain) of n. If
7 is a surjective mapping, B is called a homomorphic image of A. We write
Hom(A, B) for the set of all homomorphisms from A into B.

In particular, a constant of A will be mapped to the corresponding constant
of B under any homomorphism. (Exercise: Write a detailed proof of this claim,
using [9.1.3]) Recalling the notation "= from Section the above situation

(at least for the case rg > 0) can be written as

no f& = fPo (™).
n

A— B

A /B

ATs B

The next Proposition is simply a reformulation of Lemma in the context

of algebras.

Proposition 9.2.2 If A and B are two algebras of the same type with under-
lying language £, then n : A — B is a homomorphism iff for any L-term ¢
and any valuation h into A, n(tA[h]) — B [ o hl.

If £ is a formal language and t(z1, ..., z,) an L~term containing exactly the
free variables x1,...,x,, then, for any L-structure, ¢t uniquely determines an
n-ary function t* : |A|" — |A| by

(a1, ... an) = tAh(*) ...

a) o @)l
for any ay,...,a, € |A|, h an arbitrary valuation into A. An arbitrary function
f + |A|™ — |A| which is (as a set of ordered pairs) equal to a function stemming
from a term in the above sense is called a term—function (on .A). Thus, the
above proposition says that a map is a homomorphism between algebras if and
only if it is compatible with all the term—functions.

For the sake of completeness it must be mentioned that we could, with some
difficulty, have defined term—functions inductively. However, we feel that the

meaning of the above is clear.
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From Definition [4.4.3] and the remarks thereafter, we recall the special kinds
of homomorphisms and their properties. It follows that in the context of al-
gebras (i.e. in the absence of relations) a homomorphism 7 : A — B is an
isomorphism if and only if 7 is injective and surjective (i.e., bijective). As for
L—structures in general, isomorphisms delimit the degree of resolution adopted
by Universal Algebra in studying its objects. Accordingly, a property of algebras
is called an algebraic property if it is preserved under any isomorphism. As
an example, the property of being a commutative group is algebraic while the
property of being a group of permutations of {1,...,n} is not, since any group
of permutations of {1,...,n} is isomorphic to some group of permutations of
any set with n elements.

By definition, isomorphic algebras are always similar. The converse is not
true. (Exercise: Find a simple example of two similar non—isomorphic algebras.)

Some more specializations deserve mentioning:

A homomorphism from A into itself is called an endomorphism of A, and
an isomorphism from A onto itself an automorphism of A. The set of all

endomorphisms End(A) of A is the universe of the algebra
End(A) = (End(A);0,idA)

of type (2,0) where o denotes composition of maps as usual and ida is of course
the identity map of A. (For those among the readers with some algebraic back-
ground: End(A) is a monoid.) Similarly, the set Aut(A) of all automorphisms

of A is the universe of the algebra
Aut(A) = (Aut(A);o, 7 ida)

of type (2, 1,0) where ~! denotes inverses of maps (Aut(A) is a group).

Example 9.2.3

1. As an exercise: Verify for groups, rings and vector spaces that the respec-
tive definitions of homomorphisms match with the definition just given in

this section.

2. Regarding the term—algebra for some formal language £, the reader is
invited to verify that any valuation h into an L-structure A determines
an £-homomorphism 7, : Tz — A by n,(t) := tA[h]. Also verify that
if the language is functional (i.e. if it contains no relation—symbols) we

are actually facing homomorphisms in the sense of the above definition.
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9.3 Subuniverses and Subalgebras

Given a group G = (G;-,7!,¢), a subgroup of G is, roughly said, any subset of
G which is closed under the operations - and ~! and contains e. Again, there
is a straightforward generalization to the setting of arbitrary algebras, as we
have already seen for substructures. Since we do not need to worry about rela-
tions (remember that they were defined on substructures simply as restrictions,
without any further constraints), the definition of a subalgebra as a substruc-
ture of an algebra is straightforward. Recall the definition of subuniverse from

Definition ?77?.

Definition 9.3.1 Let A = (A; fA),cs be an algebra. An algebra B = (B; fB) g
of the same type as A is a subalgebra of A iff B is a subuniverse of A and
fSB is the restriction to B of fSA for all s € S. Given any subuniverse B C A,
the canonical subalgebra living on B will be denoted by B. We write Sub A

for the collection of all subuniverses of A.

Example 9.3.2

1. Consider an arbitrary group G with operations - and ~!, and neutral
-1
,€);

the subalgebras of G are just the ordinary subgroups of G. If G = (G} -),

element e. Considered as an algebra G of type (2,1,0), G = (G;-,

the subuniverses are the subsets closed under -, including . Viewed as
an algebra of type (3) with the operation m as defined in 4, the
subalgebras are the cofsetsﬂ (left or right) of any ordinary subgroup of G
and ), endowed with the restriction of m as its only operation. (Exercise:

Prove this statement.)

2. A subalgebra of the term-algebra T/ as defined in[9.1.5|can easily be found

by restriction to closed terms, i.e. the terms containing no variables.

We list some straightforward generalizations of facts well-known from the

group, ring or vector space setting. The proof is left as an exercise.

Proposition 9.3.3 Let A and B be algebras and n : A — B any homomor-
phism.

1. If S C A is a subuniverse of A, then n[S] ={n(s); s € S} is a subuniverse
of B. Extended notation established in [0.3.1] the corresponding subalge-
bra of B will be written n[S]. n[S] is clearly a homomorphic image of S
in the sense of 0.2.1]

If S is a subset of a group G, then a left co—set of S in G is a set of the form g -
S :={g-s; s€ S} for some g € G. Similarly, a right co—set of S in G is of the form
S-g:={s-g; seS}
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2. If T C B is a subuniverse of B, then n7![T] = {a € A : h(a) € T} is a
subuniverse of A. Again, 7![T] stands for the corresponding subalgebra
of A.

3. If {S; k€ K} is a chainf| of subuniverses of A, then their set union
Urex Sk is a subuniverse of A. More generally, if D ={Sy; k € K} is
a set of subuniverses of A directed by C (i.e. for Sg,, Sk, € D there is
always an S € D such that Si, U Sk, C S), then D is a subuniverse of
A.

If (Si; k € K) is any family of subuniverses of an algebra A, then the set
intersection (1, Sk is a subuniverse of A. This even applies to the empty
family of subuniverses whose intersection is A itself. We conclude with the

following proposition.

Proposition 9.3.4 Sub A is a closure system and thus a complete lattice (un-
der Q).

The tricky part is to be more specific about the supremum of a family of
subuniverses. Examples where suprema do not coincide with the set union
are easily found (Exercise!), consequently we have to ask ourselves how these
suprema are to be defined. From Section 7?7 we know that for any X C A
there is a smallest subuniverse of A extending X, the substructure generated
by X, A[X]. Clearly, by restricting the fundamental operations of A to A[X],
we obtain a subalgebra of A, the subalgebra generated by X in A, and the
process of generating A[X] from below by closing X under all the fundamental

operations as described in 77 applies to the setting of algebras as well, so

AX]= | G"x]

neN

where G is the set of fundamental operations of A, including the nullary ones.
(For the notation, see Definition ?7.)

It follows easily from Proposition that a subset S of an algebr A is
a subuniverse of A if and only if S =A[S].

Example 9.3.5 Consider the group (Z;+,—,0), and let X := {2}. Since in
this setting subalgebras are subgroups, Z[X] is the set of even integers, as we
learned from Group Theory. Bottom-up construction yields G° = {2}, G! =
{-2,0,2,4}, G = {—4,-2,0,2,4,6,8}, .... It is a tedious but still instructing

2Remember that {S ; k € K} is a chain if, for k1, k2 € K, either Sk, C Sk, or Sky C Sk, -
3 “subset of an algebra” is a clear but not entirely correct abbreviation of “a subset S of
the the universe A of an algebra A”.
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exercise to write out the details for the calculation G3[X] = G[G?*[X]]. (Cf.
Definition ?? for details.)

Call a subuniverse S finitely generated if and only if S =A[X] for some
finite subset X; especially, an algebra A is finitely generated iff its universe A
is finitely generated (as a subuniverse).

The following Proposition is another consequence of

Proposition 9.3.6 For any algebra A,
AX]=|J{A[Y]; Y C X and Y finite} .

Proof. Let D :={A[Y]; Y C X and Y finite}.

If Y C X, then A[Y]CA[X], so UD CA[X].

On the other hand, since D is directed (cf. Proposition [0.3.33.), D is a
subuniverse of A; moreover X C JD, so A[X]C D. |

In particular, the universe of any algebra is the union of its finitely generated
subuniverses. A related notion is the following: A is called locally finite if and
only if every finitely generated subalgebra of A is finite (note that A itself need
not be finitely generated).

Example 9.3.7 Consider A = (Z;+, —,0) as the additive group with neutral
element 0. Then, A is finitely generated since A =A[{1}], but A is not lo-
cally finite for exactly this reason. On the other hand, if we let B be ZY, the
product of countably infinite many two—element groups with operations defined
componentwise, we see that B is locally finite but not finitely generated. (The
verification is left as an exercise.)

Clearly every finite algebra is locally finite. Also, if an infinite algebra is

locally finite, it is never finitely generated. The proofs are left as an exercise.

We conclude this section by looking at extremal subalgebras. The largest
subalgebra of any algebra A is, trivially, A itself. Consequently, our next step
will be to look for coatoms (cf. Definition |3.1.9)) in the lattice Sub A.

Definition 9.3.8 B is a maximal subalgebra of A iff B # A and for any
subuniverse S of A, BC S C A implies S = B or S = A.

Maximal subalgebras need not exist in a given algebra A. (Exercise: Prove
that the additive group of rational numbers has no maximal subgroups.)

The following digression is intended to spice up the discussion with some
nontrivial flavor. Given any algebra A, let the Frattini algebra ®(A) be the

intersection of all maximal subalgebras of A. (If A has no maximal subalgebras,
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®(A) is reduced to the intersection of the empty family of subalgebras of A,
which is A itself.) An element a € A is called a non—generator if and only
if it can be dropped from any set generating A, more precisely, if and only if
A[X]= A implies A[X \ {a}]= A for any X C A. These notions are connected
by the following Proposition.

Proposition 9.3.9 For any algebra A, the universe of ®(A) coincides with the

set of all non—generators of A.

Proof. We show that a € A fails to be a non—generator exactly if a lies outside
some maximal subalgebra M of A. Suppose a is not a non—generator. Then,
there exists X C A such that A[X]# A but A[X U{a}]= A. Let S be the
collection of all subuniverses of A containing X but excluding a. S # ) since
A[X]e S. Let C be a chain in S and let S = |JC. Then S is a subuniverse
by 3 and a ¢ S, so S € S. By applying Zorn’s Lemma (cf. Section ?? or
Appendix we conclude that S contains a subuniverse M maximal with respect
to C, and that the subalgebra M with universe M is a maximal subalgebra of
A. Indeed, if a subalgebra B properly includes M, then X C B and a € B,
hence B = A. Since M is therefore a maximal subalgebra not containing a,
a is not contained in the intersection ®(A) of all maximal subalgebras of A.
This proves that any non—generator lies outside the Frattini algebra. For the
other direction, assume M is a maximal subalgebra of A and a ¢ M. Then,
A[M U{a}]= A while A[M]= M # A, thus a is not a non—generator. |

The smallest subalgebra of A is the subalgebra with universe A[()]. (Proof:
exercise.) As mentioned earlier in this section, if the type of A does not include
any nullary operations, this is just the empty algebra of this type. If there are

nullary operations, i.e. constants, we have
A[P]=Al{c; cis a constant}] .

(Exercise: Prove this statement!) This is familiar from Ring Theory, where the
notion of the characteristic of a (commutative, with 1) domain D is defined
as the cardinality of the subring generated in D by the constants 0 and 1. In
the same way as above for maximal subalgebras, we may define here minimal
subalgebras, as opposed to smallest subalgebras, as the atoms (cf. Definition
in the lattice Sub A: Again, they need not exist in a given algebra A.
(Exercise: The additive group of rational numbers has no minimal subgroups,

as has the additive group of the integers.)
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9.4 Direct Products

In Section[7.2] we were first acquainted with products of families of L-structures
and saw that, from the viewpoint of First Order Logic , products are not an
appropriate tool to build new models, since satisfaction of axioms is violated.
Algebras on the other hand will prove to be much more resistant to the hostile
effects of building products, since they lack relations. By restricting the classes
of algebras under consideration to those axiomatized by equations we will later
see that satisfaction of these axioms is preserved under products.

From recall the definition of the direct product [] g As of a family
(As; s € 5). It is clear that in the case of algebras, this definition is simplified
since we do not have to deal with relations. Note that if S = 0§, i.e. if we
consider an empty family of algebras (or structures), their direct product is just
{0} — a fact we used already in Remark [0.1.3]3 in order to explain what nullary

operations are.

Definition 9.4.1 Let Ay (k € K) be similar algebras. Then the direct prod-
uct [],cx Ak is the algebra A of the same type with universe [], ., Ax and

fundamental operations f;A‘ given by
A ar ) = o S @), an (), )

for any maps aq,...,a,, in erK Ag. If A =2 A for some algebra A and all

k € K, we write A® instead of [, Ax and call A a direct power of A.

We leave it to the readers to convince themselves that their favourite exam-
ple of a direct product construction from classical algebra indeed falls under the
scope of Deﬁnition Note the case K = (): Here the direct product degener-
ates into the (unique) one-element algebra of the type considered. Constructions
based on the direct product will play a major role in the following.

It is straightforward (i.e. an easy exercise) to check that the projections
7y, associated with the notion of direct products are surjective homomorphisms
from ], x Ar onto Ay for any collection. Almost as simple is the following

observation.

Lemma 9.4.2 If B and Ay (k € K) are similar algebras, and g : B — Ay
is a surjective homorphism for each k € K, then there is a uniquely determined
surjective homomorphism g : B —[[, o, Ak satisfying g, = 7 o g for all
ke K.

Proof. Indeed, g defined by g(b) :=(gx(b) ; k € K) has the required properties.
(Exercise: Develop the details.) ]
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More interesting is the fact that direct products of algebras can actually
be characterized by the conclusion of Lemma [9.4.2} Assume C and Ay are
similar algebras and hy : C — Ay is a surjective homorphisms for every k €
K. Then we call the pair (C,{(hy; k € K)) the categorical product of the
family (Ay; k € K) if and only if, for any algebra B of the same type and
any family (gx ; k € K) of surjective homomorphisms g : B — Ay, there is a
surjective homomorphism g : B — C satifying g, = hgog for all k € K. Thus,
by the above remarks, the direct product is a categorical product. Interestingly,

even the converse holds up to isomorphism, as the following Proposition shows.

Proposition 9.4.3 For any categorical product (C, (hy; k € K)) of a family
(Ag; k € K) of similar algebras, C =[], . x Ak-

Proof. Suppose (C, (hi ; k € K)) is a categorical product of the family (A ; k € K).
Bywe get a surjective homomorphism g : [],cx Axr— C with hpog = 7.
On the other hand, we have seen above by explicit construction that there is
a onto homomorphism h : C —>erK A, such that mp o h = hy for all k.
Hence 7, o h o g = 7y, which shows that hog :[[,cx Ax—]]rcx Ar must
be the identity map. Thus we have shown that h and g are mutually inverse
isomorphisms and we are done. ]

In Category Theory, the definition of categorical products indeed defines
products in a general sense, since categorically isomorphism stands for equality.

We conclude this section with the following fact which neatly connects all

the basic concepts we have studied so far.

Proposition 9.4.4 Let A and B be similar algebras. Then h : A — Bis a
homomorphism from A into B iff {{a,h(a)); a € A} is a subuniverse of A x B.

Proof. This is left as an exercise we do not want to withhold. [ |
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Chapter 10

Congruences

Up to now, the constructions and notions we presented were mere translations
from Model Theoretic concepts to Universal Algebra. We obtained them by gen-
eralizing well-known constructions, thus producing something new from some-
thing old in a straightforward manner. Examples for this process are Homo-
morphic images (Def. together Withl), subalgebras (Def. , and
direct products (Def. . Conspicuously missing is another construction,
which — although intimately connected with the formation of homomorphic
images — emphasizes the functional character of Universal Algebras, namely
the process of dividing the universe of an algebra into nonempty pieces and
giving the collection of sets thus obtained the structure of an algebra of the
same type (cf. Section . In Classical Algebra, say Group Theory, this
process amounts to partitions of a group G into co—sets of some normal sub-
group N C G. However, at this point, we need the more general concept of a

congruence relation.

10.1 Congruences and quotient algebras

Suppose we are given an algebra A and an equivalence relation 1 on the universe
A of A. We want to turn the quotient set A/¥ into an algebra of the same type
as A in such a way that the canonical map 7y becomes a homomorphism. This
requirement completely determines the fundamental operations fZA /9 Indeed,
we must have (by Definition

A (rga@r), . molan) = mo(FA ars - an)),

123
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or in the notation established in Section [1.4]

fiAA/ﬂ([al]v"w[aHD: [f;&(ala""am)]v

€ A. Now, if aj,a; €

and thus we should have

for all fundamental operations f; and all ay,...,a,,
A with a;da’; for j €{1,...,r;}, then [a;] = [a]

}
J
fZA/ﬁ([al],...,[am]) = fiA/ﬂ([a’l],...,[a’ ]). However, there is no reason why

T
fZA (a1,...,a,,) and fiA(a’l, ..., a; ) should be in the same ¥-class, thus fZA /6
as specified is not necessarily well-defined. This points out the restriction we

have to impose on .

Definition 10.1.1 Let A be an algebra and ¢ an equivalence relation on the

universe A of A.
1. 9 is compatible with the fundamental operation sz iff

ajvaj; for j €{1,...,r;} implies fiA(al,...,aT.i)ﬂfiA(a’l,... al)

sy
for any choice of a;, a’; € A.

2. ¥ is a congruence (relation) on A iff ¥ is compatible with all funda-

mental operations of A.

3. Given a congruence ¥ on A, the quotient set A/9¥ equipped with operations

fZA /Y defined by

JiA /19([0'1]7 ) [am]) = [fi(al’ ce 70”"i)]

is called the quotient algebra of A relative to 9. Con A denotes the set

of all congruence relations on A.

Note that any equivalence relation is compatible with all nullary operations
(cf. Section defined on its carrier set. The discussion preceding Definition
ShOWS that (i) the canonical map 7y can be turned into a homomorphism
if and only if ¥ is a congruence on A, and (ii) the algebraic structure imposed
on A by this requirement is uniquely determined.

To include but a few simple examples, we note that A 4 and V 4 (cf. Example
are congruences for any algebra A, so they are clearly the smallest and the
largest congruence on A, respectively. As a less trivial example, define a relation
¥ on Q by adb if and only if a—b € Z. It is easy to check that ¥ is an equivalence
and that ¥ is compatible with + and — but not with -, thus ¥ is a congruence
on the additive group (Q;+, —,0) but not on the ring (Q;+, —,-,0,1).
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Lemma 10.1.2 If ¢ is a congruence on A, then 7y : A — A /J is a surjective

homomorphism.

Proof. Exercise! ]
For equivalences we have seen that there was a mutual correspondence be-
tween the kernels of maps and the equivalence relations. Transposed to the

context of congruences, this reads as in the following proposition.

Proposition 10.1.3 For any algebra A, the congruences on A are precisely

the kernels of the homomorphisms with source A.

Proof. Another exercise. [

Two different homomorphisms with source A may have the same kernel
even if both of them are surjective. For example, all automorphisms of A
(i.e. isomorphisms 1 : A — A) have the same kernel Ay ={(a,a); a € A}.
However, the targets of surjective homomorphisms with the same kernel are

isomorphic.

Proposition 10.1.4 Assume g; : A — Bj and go : A — By are surjective

homomorphisms and ker g; = ker g,. Then B; = Bs.

Proof. Define n : By — By by n(g1(a)) := g2(a). Then, n is well-defined,

injective and surjective, since
g1(a) = g1(a’) iff ga(a) = g2(a’),

for any a,a’ € A, and g1, g2 are both surjective.

Now, for any g1(a1),...,91(ar;) € B1 we have

B
n(fP g(a), o oi(a)) = (. an)
(since g1 is a homomorphism)
= gQ(fztA(alv"'va'Ti))
(by definition of )
= fZ;BQ(QQ(al)a"'vg2(ari))
(since go is a homomorphism)

Bemgi(@)), ... (g1 (ar))
(by definition of 7).

This shows that 1 is a homomorphism. ]
The most important consequence of Proposition is covered by the

following theorem.
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Theorem 10.1.5 (The Homomorphism Theorem) Letn : A — B be a
surjective homomorphism from an algebra A to an algebra B. Then, B and
A /Xkern are isomorphic. In other words, homomorphic images and quotient

algebras of A are identical (up to isomorphism).

Proof. Let x = kern, then n and the projection 7, : A — A /k are both
surjective and have the same kernel. Consequently, our claim follows by Propo-
sition [0.T.41 |
Theorem may be viewed as the target end dual of Proposition
If 5 in is not surjective, the conclusion reads n[A] = A /ker n. (Exercise:
Modify the proof of Theorem to obtain a proof of this statement.)
Given two congruences 9 and p on some algebra A, each of the congruences

carries over to the quotient of A under the other in a natural way.

Definition 10.1.6 If A is an algebra and ¢, p € Con A, then ¥/p is the binary
relation on A defined by

9/p={(lal,,, [b],,)€ (A /p)*; avb} .

¥/p is a binary relation on A, and some simple calculations show that ¥/p €
Con A. (Proof: Exercise.)

Example 10.1.7 Consider the group Z = (Z; +,0) as an algebra of type (2,0).
For
9 :={(m,n)€ Z*; m =n mod 3}

and
p:={{m,n)€ Z*; m =n mod 4},

we get Z /p = Zy.
[0], = [4], = [8],,, so since 491, we get [0] ,J[1] ;; since 892, we get [0] (2]
and since 093, we get [0] 9[3]

group with one element, [0]

s
,- Thus we conclude that A /4/p is the trivial
o

In general, there is no nice overall behaviour of ¥/p expressible in terms ¥

and p. However, there are exceptions, as can be seen in the following Theorem.

Theorem 10.1.8 If ) and p are congruences on the algebra A satisfying p C 9,
then

(A /p)/(F]/p) = A [D.

Proof. The isomorphism n : (A /p)/(¥/p) — A /¥ is given by

n((lal,l, /) = laly.

n/p
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The student is kindly invited to verify that 7 is well-defined and an isomorphism.
]

Going back to Example [[0.1.7] we see that for ¥ and p as defined we have
p € 9. As an alternative, consider p :={(m,n)€ Z?>; m =n mod 6}. Then
p C ¥ and indeed (Z /p)/(9/p) 2 Z /Y = Zs.

The restriction of congruences to subalgebras is worth a few thoughts as

well.

Definition 10.1.9 If A is an algebra, ¥ € Con A and B C A, then we define
BY C A by
B? :={a € A; avb for some b € B} .

Exercise 10.1.10 Which of the following statements is true?
1. For any algebra A, any ¥ € Con A and any subset B C A, B” is a

subuniverse of A.

2. For any algebra A and any ¢ € Con A, the assignment B +— B” defines

a closure operator on A.

We will need a special case of the first statement to formulate the next main

result.

Lemma 10.1.11 Let A be an algebra and ¥ € Con A. Then, for any subuni-
verse B C A, BY is a subunivers of A.

Proof. If f is a fundamental operation of A and ay,...,a, € BY, then there

are by,...,b. € B with a19b4, ...,a,9b.. Since B is a subuniverse, we have
f(b1,...,b.) € B,
and ¥ being a congruence, we have
flay,...;a)0f(b1,...,b.).

We conclude that f(ay,...,a,) € B” by definition of BY. |
From the point of view of quotients, we obtain nothing new when we switch
from ¥ to ¥ N B? and from B to BY.

Theorem 10.1.12 If A is an algebra, 9 € Con A and B € Sub A, then

B/(WN B%) =B’ /(¥ B).

1For the sake of completeness we must mention that we also write BY for the subalgebra
of A whose subuniverse is BY.
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Proof. Define n : B /(9N B2) —s B? /(¥ N BY?) by

n([b]ﬂﬁBQ) = [b]ﬂﬁBﬁL

To check that 7 is well-defined and an isomorphism is left as an exercise. ]

Since there usually is an abundance of congruences and equivalences on any
given algebra A, the need arises to impose some structure onto the sets Eq A
and Con A. The direct approach is to treat the relations as sets of ordered
pairs and compare them using C. Thus, if ¥ and p are congruences on some
algebra A, we say that ¥ is ﬁnelﬂ than p if and only if 9 C p. If ¥ is finer than
p, then p is said to be coarser than 9.

The sets Con A of congruences and Eq A of equivalences on an algebra A
display interesting features when considered as ordered by C. It is easy to see
that the intersection of a family of congruences (as sets!) is again a congruence,
and the same holds for equivalences. On the other hand, the union of a family
of congruences need not even be an equivalence. As we saw in [3.2.3] arbitrary
intersections (i.e. infima of arbitrary families) give rise to arbitrary suprema,
but in this case (as for Sub A), suprema are not identical with set theoretical

unions.

Proposition 10.1.13 For any algebra A, the sets Eq A and Con A, ordered
by C, are both complete lattices.

Proof. See[II.1.5 or even better, try it yourself. |
For more details on the complete lattice of congruences, see [10.2] below.
We conclude this section with an example intended to show that our defini-

tions indeed generalize notions well-known in Algebra.

Example 10.1.14 Let G = (G;-,~!,e) be any group, and N C G a normal
subgrouﬂﬂ We write ab instead of a-b and aN for {an ; n € N} and the like to
keep notation familiar. Then we define a binary relation ¥ on G by atxb if and
only if aN = bN for a,b € G. ¥y is clearly an equivalence. (Exercise!) Suppose
a¥ya’ and by, Then, abN = aNb = ¢/Nb = o/bN = ¢'U'N and a 'N =
(N7ta)"'=(Na)"' = (aN) "t =(a’N)"t =... =ad "IN, so ¥y is compatible
with - and ~!. Thus ¥ is a congruence. Now aN = bN if and only if ab~! € N,
hence a¥yb if and only if a € Nb = bN. Since b = be € N, this shows that the
Yn-class of any b € G is just bN. In other words, G /¥y = G /N canonical.

2Despite this being mere nomenclature, it still exhibits the intended use of congruences to
“build blocks”. A congruence thus is the finer the smaller its block are, i.e. the fewer elements
are related by it.

3Recall that a subgroup N of a group G is a normal subgroup if and only if gHg~™! = H
for all g € G, which is equivalent to gH = Hg for all € G
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Starting with an arbitrary congruence ¥ on G, it is easy to verify that [e], =: N
is in fact a normal subgroup of G and that ¥ = ¥. Thus, congruences on G
and normal subgroups of G correspond bijectively. Accordingly, group theorists
work with normal subgroups rather than with congruences. Note, however, that
this correspondence hinges on — among other facts — the presence of a neutral
element e in G. Consequently, we cannot expect to replace congruences by the

consideration of special kinds of subalgebras in our general setting.

10.2 The lattice of congruences

As we have seen in Proposition the set Con A of congruences on an
algebra A is a (complete) lattice when ordered by C. However, we have also
seen that the suprema in this lattice are more complicated to describe than the

infima. In this section, we want to spice up the results with some more details.

Definition 10.2.1 If Ry, Ry C A? are binary relations on some set A, then the
relational product R; o R, is defined by

Ry 0 Ry :={{a,b)e A?; for some c, (a,c)€ Ry and (c,b)€ Ry} .

Note that the product fog of two maps is not a special case of the relational
product as defined above, since o is not read in the same direction. This is, of
course, inconsistent notation, but it serves the convenience of the reader, because
it mirrors the natural direction of reading in both cases.

The relational product in general might display some completely unreason-
able behaviors, in the sense that the product of two rather large relations may
even be empty. The situation changes to the better when we focus on congru-

ences and equivalences.

Exercise 10.2.2

1. Is the relational product commutative? Is it associative?
2. What if we restrict ourselves to equivalences on some set A7

3. Given two equivalences ¥, p on some set A, is the relational product ¥ o p

always an equivalence?

4. Show that for ¥ € Eq A, Yo =49.

In order to iterate the relational product over three and more factors, we

have to agree on a reading in which we may omit the brackets. Thus, we define
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for binary relations Ry, ..., R, the product R;o...0o R, by
Rio...oR,:==Ryo(Rao(...(Ru—10Ry)...)).

Another notion not totally foreign, but still unexpected in connection with

relations, is the inverse of a relation.

Definition 10.2.3 If R C A? is a binary relation on a set A, then R~! denotes

the (relational) inverse of R and is defined by
R :={(b,a)c A?; (a,b)e R} .

The notion inverse demands for a reference to an operation, which in this
case is, of course, the relational product o. Unfortunately, things are not as
straightforward as with inverses in, say, groups. Clearly, the inverse of a relation
on A is always defined (other than with functions), and it is again a relation on
A. However, we do not have a nice cancellation property as in the case of groups
where the product of an element and its inverse results in the neutral element
of the binary product. On any set A, A4 is the unit element with respect to
o (why?), but we do not have Ro R™! = A4 in general (why not?). The next

exercise states the most direct consequences.

Exercise 10.2.4 Show that for 91,19, C A2, we have
(i) (W100s)™ =05 00y
(i) 01 C Oy iff 971 C 95t
For equivalences, fortunately, matters are much simpler.

Exercise 10.2.5 Show that for ¥ € Eq A, we have 97! = .

The title of the current section promised that we will deal with the lattice
of congruences, therefore we should have a closer look at the inner structure of
this lattice. We already know from that Con A is a complete lattice,
and we know how to compute the infimum of a given set of congruences on A.
We also know that the supremum is generally not the same as the set union.

Of course, in some cases we might be lucky as the following proposition shows.

Proposition 10.2.6 If O is a directed set of congruences, i.e. if 91,92 € ©
implies ¥, 92 C p for some p € O, then Sup© = |JO.

Proof. It suffices to show that | J© is a congruence. Since all the ¥ € © are

reflexive, | JO is also reflexive. The same argument applies to symmetry. To
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show transitivity, assume {a,b), (b,c)€ |J©O. Then there are ¥;,92 € © with
(a,b)€ 91 and (b,c)€ ¥5. By directedness, we find p € © with 91 C p D Vs,
hence (a,b), (b,c)€ p, and since p is a congruence and therefore transitive, we
find (a,c)e p CUO.

For compatibility, assume that (a1,b1),..., (an,b,)€ |JO and that f is an
n—ary fundamental operation of the algebra carrying the congruences in ©. We

have to show that

(Flar....an). i, b ©.

From (aq,b1),...,{ay,,b,)€ |JO we conclude that there are ¥4,...,9, € © with
(a;,b;)€ ¥;. Applying directedness of © n — 1 times, we find p € © such that

P1,..., %, C p, hence (aq,b1),...,{an,by)€ p. Finally, since p is a congruence,

<f(a17"'7an)7f(b17-'~7bn)>epgU®~
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Exercise 10.2.7

1. Does the converse also hold? That is, does Sup © = |J© imply that © is
directed?

2. Does Proposition [T10.2:6] hold for equivalences as well?

Luckily there are other characterizations of the supremum of a set of con-

gruences, which work in a more general setting.
Proposition 10.2.8 If O is a set of congruences on an algebra A, then
Sup® = J{doo...00,; neNWy,..., 0, €O}.

Proof. We shall only outline the procedure and leave the details to the reader:
LetZ:={¢go...09,; n€N,dy,..., 9, € ©}. Then the following two state-

ments hold.
1. UZE is a congruence, and 9 C |JZ, for any ¢ € ©. Thus, Sup® C |JE.

2. 9po...089, CSupO, for all n € N and all ¥y,...,9, € ©. Thus, |JE C
Sup O©.

]

In other words, the supremum of congruences is the union of the (finite)
iterated product of these congruences.

Note that the supremum of a set of congruences is expressed by finite prod-

ucts: (a,b)€ Sup O if and only if, for some n € N, some ¥y,...,¥, € © and

some ag, . ..,ant1 € A,
a = Clo7906l1’£910,2192 PN anﬂnanH =b.

Exercise 10.2.9 Does Proposition [10.2.8| remain valid if “congruence” is re-

placed with “equivalence”?

Using the characterization given in Proposition [10.2.8] we find the following

result.

Proposition 10.2.10 For ¥, € Con A, the following are equivalent:
(i) U1 09 = U9 0 ¥y
(i) Sup {J1,92} = V1 0 ¥a;

(111) 191 e} 192 g 192 e} 191.
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Proof. Exercise. ]

If one (and thus any) of the clauses of Proposition [10.2.10] holds, we say that
¥; and 95 are permutable. An algebra A such that any two congruences in
Con A are permutable is called congruence—permutable, and consequently
a class K of algebras is called congruence—permutable if any algebra in K is
congruence—permutable.

Finally, we would like to show that the congruence-lattice of a quotient is
isomorphic to a sublattice of the original congruence—lattice. We first need the

notion of an interval in a lattice.

Definition 10.2.11 If (L,<) is a lattice, then a subset I C L is called a
(closed) interval in L if, for some aj,as € L, I ={be€ L; a1 <b<as}. In

this case we write I = [a1, as].

Clearly, the closed intervals in R are intervals in the sense of the above
definition.

The following Lemma is worth some attention.

Lemma 10.2.12 For any lattice L =(L, <) and any a,a’,b,b" € L, the following

two statements hold.
1. [a,b) =[d,V] iff a=0a' and b=1V".
2. [a,b] is a sublatticeﬂ of L.

Proof. Exercise. ]

Theorem 10.2.13 (Correspondence Theorem) If A is an algebra and ¥ €
Con A, then the lattices Con A /9 and [, V 4] are isomorphic.

Proof. The isomorphism 7 is given by 7n(p) := p/¥. The details of this proof

are left as an exercise. [ ]

10.3 Generating congruences

When considering the group (Z;+,0), our experiences in Algebra tell us that
congruences on Z correspond to calculations modulo some n. More to the point,
for any congruence ¢ on Z there is a number n such that, for any k,l € Z, ki
if and only if K = [ mod n. If we divide Z by this congruence, we find the
(quotient—)group Z,, = Z/nZ.

4With this we clandestinely switched from the order—theoretic aspect of L to the algebraic
one, since here sublattice stands for subalgebra.
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There is another way of looking at this: Starting from Z, we wonder what
would be the consequences if we considered n to be the same as 0. Clearly we
would then conclude that n4+1=1,n+2=2,...,2n=0,2n+1=1,... and
so on. Finally we would end up with the very structure we called quotient group
a little earlier.

As we can see in the following Definition, there is even an algebraic way of

formulating this little game of “I wonder what would happen if n were 0”.
Definition 10.3.1 If A is an algebra and R C A?, then
O(R) :=(){¥ € ConA; RC v}

is called the congruence generated by R in A.

If R ={{a1,b1),...,{an,b,)} is finite, then we simply write

0({a1,b1),...,{an,bn))
for O(R). Moreover, if S C A, then we write 6(S) for 6(S5?).

As seen in Proposition[I0.1.13] Con A is a complete lattice with meet corre-
sponding to set—intersection. Therefore, congruences generated by some R are

indeed congruences.

Corollary 10.3.2 For any algebra A and any R C A2, §(R) is a congruence
on A. In fact, it is the least congruence ¢ on A such that for any (a,b)€ R,
ab.

Proposition 10.3.3 If A is an algebra and © C Con A, then

Sup© = 6(_J©).

Proof. Exercise. ]

In other words, the supremum of congruences is the congruence generated
by the set—union of the respective congruences.

Complete lattices stand in direct correspondence to closure systems (cf. De-
finition , and thus the generation of congruences defines a closure operator
(see Definition [3.2.5). The proof of this is left as an exercise.

We started this section by examining congruences in the group Z. This
may be somewhat misleading since almost every congruence on Z is of the form
6({a,b)). (The proof of this claim and to find its exceptions is left as an exercise.)
Congruences generated by a single pair of elements of the carrier (cf. Definition
even have their own names.
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Definition 10.3.4 A principal congruence on an algebra A is a congruence
6({a,b,)) generated by two elements.

As mentioned at the end of the previous section, our aim is to develop
another compactness—result (cf. Compactness Theorem [2.4.5)) in the context of

congruences.

Proposition 10.3.5 Let A be an algebra and ¥ € Con A. Then the following

statement holds.

9 =Sup {0((a,0)); avb} = | J{0((a,b); avb}
(J{0(R); R C9,R finite} .

Proof. We proceed in five steps which will yield the desired equations.

(1) 9 < U {0({a, b)) ; adb},
since (a,b)€ 0({a,b));

(2) U{0({a,b)); avb}C Sup {0({(a,b)) ; add},
since |J© C Sup O for all sets © of congruences on some algebra,

(3) Sup {0({a,b)); a¥b} C Sup {6(R); R C ¥, R finite},
since 0({a, b)) = 0({a, b}) and therefore {0({a, b)) ; a¥b}C{O(R); R C ¥, R finite};

(4) Sup {0(R); R C ¥,R finite} = J {#(R) ; R C 9, R finite},
since {#(R); R C ¥, R finite} is directed (cf. Proposition [10.2.6));

(5) U{0(R); R C ¥R finite}C 9,
since (R) C 9 for all R C 9.

Putting everything together, we find

9

N

U {0((a. b)) ; avb}

Sup {6({a,b)); a¥b}

Sup {#(R); R C 9, R finite}
J{0(R); R C9,R finite}
9.

N

N

N

Thus, a congruence is the supremum of its principal sub—congruences.

Exercise 10.3.6 Which of the equations in Proposition [10.3.5] hold if congru-
ence is replaced by equivalence (and consequently generation of congruences by

generation of equivalences)?
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We like to put this result in context with closure systems. The last term in
the equation above states that the closure operator assigning to each relation
the smallest closure operator containing it is what we call an algebraic closure

operator.

Definition 10.3.7 A closure operator C on a set X is called algebraic if for
any S C X, C(S) = {C(2); Z C S, Z finite}. A lattice is called an alge-
braic lattice if it is order—isomorphic (i.e. isomorphic as ordered sets) to the

closure system associated to an algebraic closure operator.

As a direct consequence of being order—isomorphic to a closure system, every
algebraic lattice is clearly complete. An alternative characterization of algebraic

complete lattices uses the notion of compact elements of a complete lattice.

Definition 10.3.8 An element a of a complete lattice L =(L, <) is called com-
pact if, for any subset S C A, the following statement holds.

Whenever a < Sup S, then for some finite Sy C S,a < Sup .Sy .

Here we find Compactness again (cf. Propositionand Theorem.
The setting is closely related to the notion of compact (subsets of) topological
spaces, where — as you might know if you have ever dealt with set—theoretical
topology — compactness stands for the property that every covering by open
sets has a finite sub—covering. Examples of compact closed subspaces of the real
line R as a topological space are the closed intervals [a, O].

Compact elements a in complete lattices can always be reached in a finite
number of steps in the following sense. If for some chain C C A we have
Sup C > a, then ¢ > a for some ¢ € C. (Exercise: prove this!)

As an exercise, so as to become used to the notion of compact elements, you

might like to show the following statements.
e Every complete lattice has at least one compact element.
e Finite lattices consist of compact elements exclusively.

e The compact elements in the complete lattice (P(X), C) are exactly the
finite Y C X.

Trivially, every element in a complete lattice is an upper bound of the com-

pact elements that lie below it:
a > Sup {c < a; ccompact}.

In an algebraic lattice, a is even the least upper bound.
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Proposition 10.3.9 The following statement is true for any complete lattice
L =(L,<).

L is algebraic iff for all a € A, a = Sup {c < a; ¢ compact}.

As suggested by the nomenclature, examples are primarily found in the field

of algebra.

Proposition 10.3.10 Con A, Eq A and Sub A are algebraic lattices for any
algebra A.

Proof. For Con A, the claim follows directly from Proposition [10.3.5
For Eq A, we first prove the analogue of Proposition for equivalences
(which should have been done in Exercise . The rest is simple.
For Sub A, Proposition [9.3.6] is exactly what we need. [
Examples of non—algebraic complete lattices, on the other hand, seem to be

less natural than their algebraic cousin.

Exercise 10.3.11 Find an example of a non—algebraic complete lattice.

The relationship between algebraic lattices and algebras is a very close one,
as can be seen in the next result. Its complete proof exceeds the scope of this

lecture.)

Theorem 10.3.12 (Birkhoff and Frink)
Let L be a complete lattice.

L is algebraic iff Lis order—isomorphic to Sub A for some algebra A .

Proof. Since we know that Sub A is algebraic for any algebra A, and we know
that being an algebraic complete lattice is preserved under order—isomorphisms
(proof: exercise), the statement that every lattice order—isomorphic to the lattice
of sub—algebras of some algebra A is algebraic, is quite obvious.

The tough part, for which we refer to the literature, is to show the converse.
Here we have to construct an algebra whose lattice of sub-algebras is order—

isomorphic to L. ™
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Chapter 11

Orders as Algebras

As mentioned in Chapter [3] semilattices and lattices give rise to an algebraic
way of looking at order—relations by treating Sup and Inf as binary operations.
The aim of this chapter is to study fundamental properties of ordered sets which
allow for this kind of algebraization of their internal structure, thereby providing

examples for universal algebras.

11.1 (Semi—)Lattices as Algebras

Definition 11.1.1 1. A binary operation - on some set S is called a semilattice—

operation iff it is

e associative, i.e. - (y-2z) = (z-y)- -z forall z,y,z € S,
e commutative, i.e. -y =y-x for all z,y € S and

e idempotent, i.e. x-z =z forall z € S.

2. A semilattice is an algebra S = (S;-) of type 2 such that - is a semilattice—

operation.

While [3.1.12] provided the relational aspect of semilattices, the above defin-
ition reflects their algebraic side. As we shall see, these two aspects are freely

interchangeable.

Proposition 11.1.2 Every Sup —semilattice (every Inf —semilattice) (S, <) is a
semilattice. Indeed, Sup (Inf) restricted to 2-element subsets of S and consid-
ered as a binary operation on S is obviously a semilattice operation.

Conversely, every semilattice operation - on a set S may be used to define two
orders <, and <; on S by setting for any z,y € Sz <;yifandonly if y =z -y
and ¢ <; y if and only if x = z-y, respectively. Then (S, <) is a Sup —semilattice

139



140 CHAPTER 11. ORDERS AS ALGEBRAS

and (S, <;) an Inf —semilattice. The orders <; and <; are dual to one another.
Moreover, these transformations are mutually inverse, that is, the binary oper-
ation Sup derived from <, coincides with - for any semilattice (S;-), and <j
derived from binary Sup in any Sup —semilattice (S, <) coincides with < (and

analogously for Inf —semilattices and <;).

It is customary to write LI for the semilattice operation corresponding to
binary Sup and to call the associated algebra S = (S;Ll) a join—semilattice;
similarly, if the operation corresponds to binary Inf, it is written as M and
the algebra S = (S;M) is called a meet—semilattice. The choice whether a
given semilattice should be regarded as a join—semilattice or a meet—semilattice
amounts to specifying which one of two orders <;, <; we wish to impose on
the semilattice’s carrier. However, picking ' to denote the semilattice operation
always means that the associated order is <; respective to which M is just binary
Sup (and similarly for U and <j).

Since we showed that the two ways of looking at semilattices (order vs.
algebra) are interchangeable in the above sense, it is natural to wonder whether
this works for lattices as well. Thus, first we need the algebraic notion of a

lattice.

Definition 11.1.3 An algebra L = (L; U, M) of type (2,2) is a lattice iff both
(L;U) and (L;M) are semilattices and the following absorption identities hold
for any z,y € L:
zU(xNy) = z (%)
and
xN(zly) = x (xx)

Proposition 11.1.4 If (L, <) is a lattice (as a poset), then (L;Sup.,Inf<) is
a lattice (as an algebra).

Conversely, if (L; LI, M) is a lattice (as an algebra), then the two order—relations
<y and <p as defined in Proposition are identical and (L, <)) is a lattice

(as a poset). Moreover, the transformation is mutually connected by
<Lv §u§>:<L, §>

and
(LiU<,,Ney,) = (L, M)

Proof. Exercise. [ ]

Example 11.1.5
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1. Recall from Definition that Eq X denotes the set of all equivalence—
relations on the set X. Consider the order (Eq X, <) (X any set) given
by a < 8 iff « C 8 for any o, 8 € Eq X (cf. Proposition . We
have o < B iff (z1,29)€ « implies (x1,x2)€ B iff every a-block [z], is
contained as a subset in a (uniquely determined) S-block [z], (verify!).
We will show that Inf and Sup of {«, 5} always exist, this means that
(Eq X, <) is a lattice under the the corresponding operations; however,

these operations are not so closely tied to the set operations U or N.

The proof of the existence of Inf is easy: If y € Eq X, v < «a and v < j3,
then every y-block C is contained in some a-block A and in some (-block
B, thus C C AN B. The collection of all sets AN B with A ranging over
a-blocks and B ranging over [-blocks is a partition of X (verify!) and so
determines an equivalence p € Eq X. Clearly p < o, 4 < g and v < p,
so p indeed is the Inf of o and § in (Eq X, <).

To show the existence of Sup, suppose a < 7, § < v and consider an
a-block A and a (-block B such that AN B # (. The unique 7-block
C containing A then has a nonempty intersection with B and must thus
coincide with the unique v-block C’ containing B. Iterating the argument,
consider a sequence of blocks Hj...., H,, from either « or 3 such that
H,NH #0forl <i<n: Iz € H, 2y € Hy, and 27 € C for
some v-block C, then also x,, € C. Now define a binary relation x on
X by zi1kx,, iff a sequence Hi,..., H,, exists as above with x; € H;
and x,, € H,,. It is straightforward to check that x is an equivalence
relation (do sol); moreover, every x-block is contained in a unique ~-block
by construction. It follows that k < 7. On the other hand, a < k and
B < k are immediate (consider sequences consisting of just one block from
either a or ), so k is indeed the Sup of @ and § in (Eq, <).

2. Continue the preceding example and assume that o and § are actually
congruences on some algebra A. We leave it as an exercise to the reader
to show that Inf and Sup of o and S computed as equivalences as above
are indeed congruences again. It follows that (Con A;M, L) is a lattice
with operations M 8 = Inf {a, } and « U 8 = Sup {a, 5}.

3. Consider the algebra N = (N;M,U) with mMn = g.c.d of m and n, m U
n = max{m,n}. Both operations are semilattice operations, and (xx*) of
Definition is satisfied since g.c.d.(m,n)< m,n. However, (x) fails
ase.g 2M(2U3)=2M3 = 1. Thus N is not a lattice. This example also
shows that the two absorption identities (*) and (**) are independent.

Clearly, by taking l.c.m. and min as operations, we get another example
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of two semilattice operations satisfying (xx) but failing (*) of Definition
Ll 1.0

As has become apparent in the preceding examples, it often depends on the
context whether the order relation or its two operations constitute the natural
way to discuss a specific lattice. Accordingly, we will abuse notation sometimes
and speak of the lattice L = (L, <) whenever < is the order on L jointly induced
by the operations M and U of the lattice L = (L;M, ).

If (Py,<1) and (P, <5) are posets, a function n : P, — P, is said to pre-

serve the order if

p <1 q implies n(p) <2 n(q) for all p,q € P;.

Funtions which preserve the order are also called order—homomorphisms
(from P; to P;). Note that this definition agrees with the definition of a £-
homomorphism (cf. Definition 4.4.1)) for the formal language £ having a binary

relaion—symbol as its only non—logical symbol.

Exercise 11.1.6 Let L = (L;M,U) be a lattice and let < be the order stemming
from M and U in the sense of Proposition [11.1.4] Show that z < 2’ and y < ¢/
imply z My <z'My’ and x Uy < 2’ Uy, ie.

M: L? — Land LU : L? — L are order-preserving.

11.2 Distributive and Modular Lattices

There are some distinctive properties of lattices which are captured by laws
resembling the group laws or ring laws familiar from classical algebra (see Ex-
ample . Such laws are actually formulae of the underlying language of
the class of algebras under consideration. To consider the collection of all alge-
bras of the same type is most often pointless, since the algebraic properties and
internal structure common to all algebras of a given type are far too general
to be of interest. By imposing laws in the above sense, we limit the class of
algebras we want to deal with, hopefully ending up with common properties
worth studying.

Consider a lattice of sets L = (L;N,U) as in Example It is a
beginner’s exercise in Set Theory to show that for any three sets U, V and W the
equations UN(VUW) = (UNW)U(VNW) and UU(VNW) = (UUW)N(VUW)
always are satisfied. Abstracting to an arbitrary lattice L, we adopt the following

definition.
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Definition 11.2.1 A lattice L = (L; M, ) is called distributive iff it satisfies
the two equations

xMyUz)=(xNy)U(xNz) (Dn)

and
zU(yNz)=(zUy)MN(zUz) (Du)

for all z,y,z € L.

It follows that every lattice of sets (L; N, U) is distributive. Most interestigly,
the converse is also true; however, the proof of this highly nontrivial fact lies
beyond the scope of this lecture.

There are many equivalent statements characterizing distributive lattices.
We only mention here that Dy and Dy, imply each other in the sense that
whenever either one is satisfied in a lattice for all x,y, z, then so is the other.

(Exercise: Prove this claim.)

Exercise 11.2.2 Find out which of the following finite lattices are distributive:
2, N5, M3, B3 (cf. Example [3.1.16).

Consider the collection S of all subspaces of a vector space V. Since the
intersection of any family of subspaces is a subspace again, S is a closure system
on the carrier V of V. Consequently, (S,C) is a complete lattice. In general,
it is simple to find subspaces A, B and C of V such that AN (BUC) #
(AN B)U (ANC) (consider three pairwise different 1-dimensional subspaces!),
so we conclude that such a lattice of subspaces is not distributive in general.
However, the equation for distributivity is true when restricted to the case

A D C. This is the motivating example for the next definition.

Definition 11.2.3 A lattice L = (L;M, ) is called modular iff it satisfies the

implication
x>z—zMN(yUz)=(zNy)U (zMNz) (M)

for all x,y,z € L.

So L is modular if and only if it satisfies (D) in special cases; hence, every
distributive lattice is modular. The converse is not true, as examples in the

following Exercise show.

Exercise 11.2.4 Find out which of the following finite lattices are modular: 2,

N5, M3, Bs (cf. Example [3.1.16| and Exercise [11.2.2]).
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Again, there are many different statements characterizing modular lattices.

Here, we only note the following.

Exercise 11.2.5 Show that a lattice L = (L;M, 1) is modular iff
(zMz)Uy)Nz=(xMNz)U(yMNz)

for all z,y,z € L.

11.3 Complemented Lattices

Given any set X, (P(X),C) is a distributive lattice P(X) = (P(X);N,U), as
we have seen above, with O’P(X) = and 173(X) = X. Moreover, for each
A € P(X) there exists B € P(X) such that AUB = X and ANB = . We

abstract this situation in the following definition.

Definition 11.3.1 A lattice L = (L;,) is bounded iff it contains a least
element Oy, and a greatest element 17,. If L is bounded and = € L, an element
y € L is a complement of z iff yLlx =1 and y Max = 0. A bounded lattice L

is complented iff every x € L has a complement.

Do not be misled to think that — as is the case for P(X) — complements
need to be unique. For example, N5 is complemented, but there is an element
which has more than one complement (which one?). The reason for this ambi-

guity lies in the non—distributivity of Njs.

Lemma 11.3.2 In a distributive lattice any element has at most one comple-

ment.

Proof. Exercise. ]
However, distributivity in itself does not guarantee the existence of comple-

ments.

Exercise 11.3.3 Show that in a chain, only the top and bottom elements have
complements, so chains considered as lattices are not complemented if they have

more than two elements.

Lattices that are both distributive and complemented present an important
special case. For historical reasons, they are called Boolean lattices. So all
lattices P(X) as considered above are Boolean. The converse, however, is not

true, not even in a weaker form, i.e. not all Boolean lattices are isomorphicﬂ

LA order—isomorphism is an order preserving, bijective function with order preserving
inverse function. Two lattices L and L’ are isomorphic if there is an order—isomorphism
n : L — L’. This is easily shown to be equivalent to being isomorphic as algebras.
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Figure 11.1: George Boole (1815-1864)

to a lattice P(X) for some set X. Consider, for example, the lattice with all
finite and cofinite subsets of some infinite set X as its carrier set and with
the operations of set union and intersection. (Exercise: Verify that this defines

indeed a Boolean lattice.)

In a Boolean lattice L the assignment of a (unique) complement to each
element may be regarded as a unary operation on L. Writing ’ for this operation,
and adding the bounds 0 and 1 as constants to the algebra, we turn L into an
algebra B of type (2,2,1,0,0) by setting B = (L;M,L),”,0,1). Such algebras
are called Boolean algebras; they were first considered in 1854 by George
Boole in his investigations in propositional calculus. They are, together with
the permutation groups of roots of polynomials as studied by Galois, among the
first abstract algebras in our sense. Again, the power set lattices above provide
standard examples. To keep notation clean, we write B(X) for the Boolean
algebra B(X) = (P(X);N,U,%,0, X) where ¢ stands for set complementation
with respect to X, and just B,, if X has n elements. Again, not every Boolean
algebra is of this sort as the finite-cofinite example above shows. Finally, BA

denotes the class of all Boolean algebras.

Now consider a topological space X =(X, 0), that is, a set X together with
a collection @ of subsets of X which is closed under finite set intersections and
arbitrary set unions and furthermore contains ) and X (O is the collection of
open sets of the space X). @ is easily seen to be a bounded distributive lattice
under the operations N and U. As the standard examples like the real line R or
the real plane R? show, an open set U € ( has very rarely a complement within
O, that is, an open set V € O such that UUV = X and UNV = . (As an

exercise, look for open sets with an open complement in R or R2.)

In a distributive bounded lattice (L, <), the complement 2’ of some = € L
has the property that it is the largest z € L such that z Mz = 0. Indeed, if
zMxz =0, then

z=zMN1l=zMN(zU2)=(N2)U(zMN2)=0U(zMa")=zMa
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and thus z < 2’ in the canonical order of L. Returning to the lattices @ of open
sets, it is not difficult to see that there is always a largest open set which is
disjoint from some given open set U: The set of all interior points of X \U. We

abstract the weaker property, not confining ourselves to the distributive case.

Definition 11.3.4 Let L = (L;1,U) be a lattice with bottom element O, , and

z,x* € L. Then z* is called a pseudocomplement of x iff
(i) zNa* =0 and
(ii) Mz = 0 implies z < z* for all z € L.

L is called pseudocomplemented iff every z € L has a pseudocomple-

mented.

The definition of pseudocomplements requires only the existence of a least
element 0 in L. However, if a,b € L have pseudocomplements a*,b* in L,
respectively, and a < b, then b* < a* (Exercise: Prove this!); so a pseudocom-
plemented lattice will always have a greatest element, namely 0*.

Every complemented lattice is pseudocomplemented but not vice versa (as
the lattices (© of open sets show); also every chain, considered as a lattice,
is pseudocomplemented but not complemented whenever it has at least three
elements (Exercise: Why?).

As for complements in lattices, the assignment of the (unique) pseudocom-
plement to each element may be regarded as a unary operation on L. Writing
* for this operation, we make L an algebra A of type (2,2,1,0,0) by setting
A = (L;M,U,%,0,1) where 0 and 1 are constants denoting the bounds of L.
We will call such algebras lattices with pseudocomplementation. It is no
loss of generality to include 1 among the constants since is definable by means
of * and 0.

The most interesting case occurs if the lattice with pseudocomplementation
is distributive as a lattice. Such algebras are commonly called p—algebras and
the corresponding class is denoted by PALG. The open set lattices @O are typi-
cal examples of p—algebras. p—algebras arise in logic much in the same way as
Boolean algebras. While the latter serve as algebraic models of classical propo-
sitional calculus, p-algebras model (a fragment of) intuitionistic propositional
calculus; see [?] for a thorough study of this connection. A more recent ap-
plication of p—algebras within Computer Science is to use them as models for
so-called rough sets, see e.g. [?] and the references given there. Of course, every
Boolean algebra is a p—algebra. p—algebras will serve as a prime source of exam-
ples to illustrate many of the universal algebraic concepts addressed throughout

this lecture.
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Nondistributive lattices which are pseudocomplemented but not comple-
mented exist in abundance. Indeed, pick your favorite bounded nondistribu-
tive lattice L and add a new bottom element L; the resulting ordered set is
a lattice where exactly 17 and 1 have complements, and where 1 serves as a

pseudocomplement of everything except itself.

Exercise 11.3.5 Check the claim from the previous paragraph for Ms.

3

3

e

Ms
As a consequence, the class of algebras arising from such lattices by adding

pseudocomplementation as a fundamental operation is too diverse to admit a
meaningful structure theory (with a few exceptions).

Note that in Definition only the meet operation IM is used, so pseudo-
complements may meaningfully be defined in any meet semilattice with a zero.
As we will see, such algebras have many interesting features, especially when

compared to p—algebras.

Definition 11.3.6 A meet-semilattice S = (5;M) with least element Og is
pseudocomplemented iff every = € S has a pseudocomplement in the sense
of Def. ?77.

We will exclusively consider pseudocomplemented semilattices in the type
(2,1,0,0), that is, with pseudocomplementation as a fundamental operation as
well as 0 and 1 = 0*. We call such algebras p—semilattices and write PCS for

the their class. Here is a p—semilattice which is not a lattice:

Example 11.3.7 Let i/ be the collection of open subsets of R which are con-
tained in the open interval (—2,2) but do not contain (—1, 1), together with all
intervals of the form (—2—1/n,2+1/n), and §) and R. Ordered by set inclusion,
U is a meet semilattice with N as Inf but not a lattice since, e.g., (—1.5,0) and
(0,1.5) have no Sup within ¢/ (why?).

The pseudocomplement of any nonempty set in I/ is @), which itself has R as

its pseudocomplement.
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Our discussion of complements would not be complete without mentioning
the numerous variants of complementation properties which are considered in
the lattice theoretic literature. There we might encounter dual pseudocomple-
ments (defined in terms of join and greatest element), relative complements and
pseudocomplements (with respect to an interval [a, b] within a lattice), or oper-
ations which obey some but not all of the identities valid for complementation
in a distributive lattice. These variants lead us to algebras known as Heyting
algebras, Post algebras and De Morgan algebras, just to mention a few. [?] is a

good reference.

11.4 Order and First—Order Logic

Taking a closer look at the definition of complete lattices, we realize that it
is formulated using notions that are not expressible in first—order logic: Every
subset must have an infimum and a supremum. We therefore might argue
that the definition uses second—order concepts and is thus not restateable in
first-order languages. This argument is clearly short-sighted in that it draws a
general conclusion from our failure to find an appropriate formalization. From
the results of Chapter [§] we know what it means for a class of structures not
to be axiomatizable in first—order logic. Thus in order to show that the class of
complete lattices cannot be captured using first—order concepts exclusively, we
use the semantic way and show that this class is not closed under ultraproducts.

As a formal language we use L<, the formal language having but the binary
relation-symbol < as a non-logical symbol. An L<—structure is thus basically
a set with a binary relation defined on it. However, since we want to con-
sider lattices in general and complete lattices specifically, we note the following

proposition.

Proposition 11.4.1 The class of partially ordered sets is basic—elementary, as

is the class of lattices.

Proof. To affirm a class of being (basic—)elementary is easier than to refute it,
since for the former we only need to present a (finite) set of axioms which does
the job. As an exercise, find an appropriate set of L<—sentences ¥, such that
Mod ¥, is exactly the class of lattices. ]
The ultraproduct we are going to construct next may look funny as a com-
plete lattice, yet it is suitable for our purpose.
Let N be the set N enriched by a new element we will denote by T. Using

the (canonical) order-relation < on N, we define the binary relation <g on N



11.5. ORDER VS. ALGEBRA 149
by setting T to be the (new) greatest elementﬂ7 ie.
r<gyiff [z,ye Nandz <ylory=T

for all z,y € N. Since <y is an extension of <, we risk no confusion in simply

writing < for both relations.

Exercise 11.4.2 Show that < as defined above is an order on N and that <N, <)

is a complete lattice.

Let U be an ultrafilter over N containing all cofinite subsets of N, and let
A :=RNN JU. The proofs of the following observations are left as exercises for the

reader.

o Aisalattice with greatest element T 4 := (T, T, T,...); and least element
OA = <07070, .. ->L{-

e All elements of A except T 4 and 04 have an upper and a lower cover (cf.

Section .

e (0,1,2,...)y is an upper bound of N :={m; n € N} in A, where i :=
(n,n,n, .. )y.

e If b € | A] is an upper bound of N, then so is the lower cover of b. (Hint: If
such a lower cover ¢ were not an upper bound of N, then for some 7 € N,

n < c¢<n+4+1, from which we conclude ¢ =7 or ¢ = n+ 1. But then b,

being the upper cover of ¢, could not be an upper bound of N.)

e N does not have a supremum in A (and the set of upper bounds of N has

no infimum).

So we find a subset of A having no supremum, thus A4 is not a complete
lattice. Since A is an ultraproduct of complete lattices, we have a proof for the

following proposition.

Proposition 11.4.3 The class of complete lattices is not an elementary class.

11.5 Order vs. Algebra

In some cases, ordered structures allow for algebraization of their order—relation.

Although the relational and the algebraic aspect are mutually dual, there are

2From Set Theory you probably remember the set w + 1, the ordinal successor of the first
infinite ordinal w. Actually, our set N is exactly of ordinal type w + 1, or in other words, the
ordered sets (N, <) and (w + 1, €) are isomorphic.
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differences if we consider classes of ordered sets as a whole, especially if we
include structure—preserving maps in our considerations.

From Section[11.1] recall the notions of order—preserving maps, order-homomorphisms
and order—isomorphism. If (Ly,<;) and (Lo, <5) are lattices, then a map

n : L1 — Lo is a lattice—homomorphism if 7 preserves Sup and Inf | i.e. if

n(Sup x,y) = Sup n(x),n(y)

and

n(Inf z,y) = Inf n(z),n(y)

for all z,y € L1, where the Sup’s and Inf ’s are taken in the appropriate lattice
Ly or L. Of course, if we consider just one of the two identities above, we get
a definition of a semilattice—homomorphism.

A lattice—isomorphism is a bijective lattice—homomorphism whose inverse
map is again a lattice-homomorphism.

Please note that the definition of lattice-homomorphisms and —isomorphisms
agree with the definition of homomorphisms and isomorphisms for algebras of
type (2, 2), of which lattices are concrete instances, ans similarly for semilattice—
homomorphisms.

Now consider the lattices Bo, the four—element boolean algebra, and Ly, the

four—element chain:

0 0
B2 L4

It is easily seen that there is an order-homomorphism from By to Ly, e.g.
given by 0 — 0,1 — 1, a +— c and b — d. However, it also rather obvious that
this map is not a lattice-homomorphism. The reason for this discrepancy lies in
the asymmetry of the constraints on mappings to preserve relations on one hand
and to preserve functions on the other hand. Relational homomorphisms such
as order-homomorphisms are only preserving in one direction, e.g. if = < y,
then n(x) < n(y). There is nothing said about the case where x and y are
incomparable. n(x) may be incomparable to 7(y), but not necessarily. On the
other hand, when operations such as Sup are considered, every pair of elements
x,y has to satisfy Supn(z),n(y) = n(Supz,y) for n to preserve Sup, so the
constraint is not a conditional one, but a generally formulated identity.

For those among you who feel uncomfortable with the above elaborations
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since they emphasize the weak point of relational homomorphisms in the sense
that, although a and b are not in relation, their images ¢ and d are comparable,

we add another example which circumnavigates this point.

Example 11.5.1 Taking L4 from above, we define Ly | T to be the lattice re-
sulted from adding a new least element | and a new greatest element T to Ly4.
Then, the map from Ly to Ly | 1 given by 0 — 1L, 1 +— T, a+ a and b — b is

an order—homomorphism but not a lattice-homomorphism. (Proof: Exercise.)

So we notice that

Proposition 11.5.2 If A and B are lattices, then every lattice-homomorphism

7 : A — B is a order-homomorphism. The converse is not true in general.

Proof. For the first part, we note that in a lattice, a < b is equivalent to
Inf a,b = a. The rest is simple.
The second part was done by mentioning the above examples. [
As we can see, lattice—homomorphisms contain more structural information

than order—homomorphisms.

11.6 Distributivity via Sublattices

Distributivity and modularity of lattices is easily formulated using equations (or
identities). It is clear that an arbitrary lattice can be tested for distributivity
by checking if the laws of distributivity hold for any triple of elements of the
lattice. However, there is a better, more universal way for this.

If L = (L;N,U) is a lattice, then a sub—lattice of L is a subalgebra of L
(viewed as an algebra of type (2,2)).

Lemma 11.6.1 For any lattice L, the following two statements hold:
1. If L is modular, then so is any sub—lattice of L.
2. If L is distributive, then so is any sub—lattice of L.

Proof. Trivial. ]
If you succeeded in exercises [I1.2.2] and [I1.2.4] you will know by now that

M3 and Nj are examples of non—distributive lattices and that Ny is an example

of a non—modular lattice.
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N M
The rather surprising fact is that they are aiso the prototypes for the respec-

tive case in the sense of the following two Lemmata.

Lemma 11.6.2 If a lattice L is non—modular, then there is a sub-lattice of L

which is isomorphic to N5.

Proof. Assume L = (L;M,U) is non-modular. Then, there are z,y,z € L,
x > z such that M (yUz) # (zMNy)U(zMz). Since x > My and yUz > z = zMNz,
we conclude zM(yUz) > (zMy)Uz. Setting a := (zMNy)Uz and b:=xM(yUz)
we thus have x > b > a > 2.

We now claim that a and y are incomparable as are b and y. To see this,

assume y > a. Then, y > z, and we have

b=zN(ylUz) = xMNy (sincey > z)
< (zNy)Uz=a
i.e. b < a, contradicting b > a. Dual arguments show that y < b leads to a
contradiction. Thus, we conclude that y ? a and y £ b, from which we also

conclude (using b > a) y 2 b and y £ a. Putting these last four facts together

we have proved the claim.

Since a < b, ally and b|ly imply that a, b, y, a My and b Ll y are pairwise

distinct, we have the following situation:

bUy

b

ally

So it remains to show that bMy =aMy and aUy = bUy. Since x My <
(xMy)Uz=a < b, we have

zNy=zNyNy<afy<bly,
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and since b < z, we also have
bNny <zNy,

and thus
zMNy=ally=>0Ny.

Similarly for a Uy =bU y.
It follows that {a My, bUy,a,b,y} is a sublattice isomorphic to Ns. ]

Lemma 11.6.3 If a modular lattice L is non—distributive, then there is a sub—

lattice of L which is isomorphic to Ms.

To summarize, if L is non—distributive, then L has a sublattice which is
isomorphic either to N5 (in which case L is not even modular) or to M3 (in
which case L might still be modular).

We are thus left with the following alternative way of characterizing modu-

larity and distributivity of lattices.

Theorem 11.6.4 Let L be a lattice. Then

1. L is modular
iff
L contains no sublattice isomorphic to Ng
iff
N5 is not isomorphically embeddable into L.
2. L is distributive
iff
L contains no sublattice isomorphic to either N5 or M3
iff
neither N5 nor M3 is isomorphically embeddable into L.
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Appendix A

A Proof for the Theorem of

L.os

In this section, we will give a proof of the Theorem of Lo$, the main theorem on
ultraproducts For the notation, please recall Section especially the
discussion following Exercise Thus, for a € [],cq |[Asl, s € S, ultrafilters
U and valuations h in [T, ¢ |Asl:

a(s) :==as :=7s(a) and ay :=my(a),

hg:=msoh and hy :=myoh.

Theorem of Lo$ (Main Theorem on Ultraproducts).

For a formal language £ let (A, ; s € S) be a family of L-structures and U be
an ultrafilter over S. For the sake of readability, let B :=]], g As be the direct
product and A := B/U the ultraproduct of the family (A, ; s € S) under U.
Then, the following holds:

1. For any valuation h into B and for any L£—formula ¢,

A ohy] iff {s€S; As E ¢[hs]}e U.

2. For any L-sentence «,

AEaiff {s€S; A Ealel.

The proof of Theorem [7.2.11]| rests on two rather technical lemmata, which
we are going to state and prove beforehand. In order to keep notation readable,

we introduce the following abbreviation.

155
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For S,U, (Ag; s € S), p and h as in the preamble and Clause 1 of the theorem,
define T'(p, h) C S by

T(‘Pah) ::{S €S; As |: @[hs]} :

Thus, T(p,h) is the set of indices s for which A, is a model for ¢ under the
(projected) valuation hs. Using this convention, Clause 1 of the Theorem of Los

may be written as
Al ol i T(o,h) € U.

The following lemma states that logic operators correspond to set theoretic

operations on the subsets of S in a quite natural way.

Lemma A.1 For some formal language £ let (A;; s € S) be a family of £-
structures and B :=[],.gAs. Then, for any valuation h into B and any L£-

formulae ¢, and any variable x the following statements hold:
L T(p A, h) =T(p, h) VT (4, h),
2. T(—p,h) = S\ T(p,h),
3. T(vap.h) = N {T(e.h(3): be B},

Proof.

L T(eAy,h) = {s€S; Aoy}
{s€S; As = ¢lhs] and A |= ¢[hs]}
{ses; A =ph}n{seS; A = ¢lhs]}
= Tl h)NT(,h)

2. T(=ph) = {seS; As | —plhs]}

= {seS8; A [~ olhs]}
S\ {s € S; As F plhs]}
SN\ T(p,h)

3. T(Vxp,h) = {se€S; As =EVrplhs]}
= {seS; A plhs(%)] for all a € |A,|}
= {se8; A, = ¢hs (bs)] for all b € |B|}
(since 75 is onto)
= {seS; A ¢lh(}),] for all b € |B|}
(since hs(i) = (msoh) (lf) =7g0 h(”lf) = h(i)s
— A{T@RE) be Bl
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The next lemma will be used when dealing with universally quantified for-
mulae in the proof of the main theorem. Together with Clause [3] of Lemma [A7T]
it will show that

T(Var, h) € U iff T(, h(%)) € U for all b € |B],

i.e. the set of indices s such that A; = Vaplhs] is not in the ultrafilter U
if and only if there is a by € B (a counter—exzample to Vxyl[hs]!) such that

T(,h(,)) ¢ U.

Lemma A.2 For some formal language £ let (As; s € S) be a family of £L-
structures, ¢ an ultrafilter over S, and B :=]],.g.As. Then, for any valuation

h into B, any L—formula 1, and any variable z, the following holds:

(AT (W,h(})): be |BeU if T(,h(})) €U, for all b e |B].

Proof. To show that the L.h.s. implies the r.h.s. is easy, since

(AT, (;)): b e IBYS T, h(5)),

for any b € |B|. Thus, if N\ {T(¢,h(})); b € |B|}€ U, then clearly also T'(¢, h(}))
for all b € |B|, since U is an ultrafilter and therefore is closed under supersets.

To show the other direction, we proceed by contraposition and assume that
NA{T(¥,nh(})); b€ |B|}¢ U. Wehave to find some by € |B| such that T(w,h(l';ﬂo)) ¢
Uu.

NAT@W.h(}); be B} U S~ N {T(W.h(])); be |B|}e U (since U is an
ultrafilter) iff V :={s € S'; there is by € |B| with s ¢ T(z/J,h(bf)))}E U.

Therefore, s € V iff A, & [h(])] for some b € |B|.

s

Now, for s € S define Dy C | A;| by

As, iff As = ¢[hs(2)] for all a € | Ayl
{a € ‘As| ; As l# d}[hs (Z)]}, else.

(So, Dy contains either all the counter-examples, if there are any, or else all the

D, =

examples for ¢ in Aj.)

Clearly D, # ( for all s € S, and (using the Axiom of Choice! Cf. Appendix
we may conclude that [],.q Ds# 0 as well.

Claim: For any b €[]

ses

ses DS?

T(,h(3)) ¢ U.
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To see this, take any b €]],.o Ds and assume s € T'(¢), h("g)) Then,

seS

N

by the definition of T'(¢, [k (i)]), which is equivalent to

As E 9lhs ()],

so clearly
A, = ¢[hs(2)] for some a € |A,|, namely for a = b,.
By the definition of D, we conclude that
D, = | Al

hence,

As = Y[R(E)] for all a € | A,

but this is in turn equivalent to
As = w[hs(bw)] for all b € |B]

and thus,
s¢ V.

Since s € T'(v, h(’g)) was arbitrarily chosen, we conclude that
T(w,h(3)) S SNV,
and S\ 'V ¢ U, hence,

T(y,h(3y)) ¢ U.

Thus, choosing any b €]],.q Ds as by, we have T'(¢, h(lz)) ¢U. (]

seS

Using these lemmata, it is not very difficult to prove the Theorem of Los.

Proof (of the Theorem of Los [7.2.11]). Using Noetherian Induction on
the structure of ¢, we will show a somewhat stronger statement than Clause 1.
We show that

for all valuations h into B, A := B/U |= plhy] it T(p,h) € U.

o If p =t; =ty for L—terms tq,ts:



A = olhu]

[ ] IngZRl(tl,ﬂf
A = plhu]

iff ' [h] = t5\[hu]
iff (B[R = (t5[h])u
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ifft {seS; (t7[h])s = (5[h])s}eU
iff  {se€S;t{hs] = t5'[hs]}=T(p,h) €U.
.) for L—terms ¢y, ...,ty, and a relation symbol R;:

iff <tA[hu] [hu]>e RA

iff (B[l 5 5 [hlu)e RA

iff {ses,« B[h)s ; (5 [h))s)e R }Ye U
it {seS; 1 hy); tf‘s[ Jye RMYeu
iff  {se€8; A plh)tel

o If p = =) for an L—formula :

A = olhu]

it AW Pl
if T(¢,h) ¢ U (by the induction hypothesis)

iff SN\T(,h)=T(p,h) €U (using Lemma [AT).

o If ¢ = A for L—formulae 9, ¥:

A E plhy]

it A ¢[hy] and A = [hy]

iff T(p,h) €U and T(Y,h) €U
(by the induction hypothesis)

iff  T(,h) NT (9, k) = T(p, h) €U
(using Lemma [A-T)).

o If ¢ = Va1 for an L—formula ¢ and a variable x:

A E plhy]

iff Ak lhy(%)] for all a € | A

iff AR @b[h(”lf)u] for all b € |B|

iff  T(,h(})) €U for all b € |B]
(by the inductive hypothesis)

i () {T(,h(): b e |Bl)= T(Vav,h) = T(p.h) €
(by Lemmata and [A.2)).

ceu

This proves Clause 1. For Clause 2 we note that for any L—sentence «

and any valuations h, k' into B,

Therefore,
AEa iff
iff

iff

iff

T(a,h) =T(a,h).

A E afh] for all valuations h into B

T(a, h) € U for all valuations h into B (by 3.)

{s € S; As E alhs]}€ U for some valuation h into B
(by the above remark)

{s€S; As = a}e U (since « is a sentence),
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which completes the proof of Clause 2 of the Theorem of Los. ]



Appendix B

A Quick Introduction to
Set Theory

What appears in this Module as an appendix intended to grant self-containedness
should actually be put at the very beginning since Set Theory lies in the center
of almost every mathematical field of work. It is both the foundation of the

majority of the theories and subject of mathematical studies in itself.

In the 19th and the beginning of the 20th century, the increasing need for for-
mal foundation and axiomatic description of Mathematics led to the Axiomatic
Set Theory. Although we will not choose this approach to Set Theory, it is an
interesting fact that the foundation of Logic and Model Theory may be regarded
as rooted in the very same fields for which it should provide the foundation. So
we will hint at the possibility to consider Set Theory as a formal theory in the
sense of this module, formalized in a very simple formal language of first—order

logic.

Figure B.1: Ernst Zermelo (1871-1953)
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B.1 What are Sets?

The aim of this section is to provide the framework wherein the set theoretical
notions essential for the understanding of this module will be defined.

The question which serves as a title for this section will not be answered.
The disappointment should not be too big, since by now we should have gotten
used to the fact that formal theories (and as such we must regard Set Theory)
do not describe the entities entirely, but merely provide a sets of “rules” or
“laws” which must hold for these entities. So what we will provide is a more or
less informal description of these rules, which in principle (and please keep this
in mind!) could be formalized as first—order axioms.

The entities considered in Set Theory are exclusively sets and classes. In
fact, the main raison d’étre for the axioms of Set Theory is to state that certain
operations preformed on sets produce still sets. Sets may contain elements,
which themselves are also sets (there is nothing else, remember). If a set contains
no elements, it is called empty. In fact, since Set Theory focuses on content and
not on structure, the elements of (entities contained in) a set are regarded as
presented all at once, so there is no order involved. This leads to the fact that

appart from the content, there is no way to distinguish sets. To be more precise,
Sets are equal if and only in they contain the same elements.

It is well-known that the fact that some set A belongs to (is contained in,

is an element of) another set B is symbolized by
AeB.

So the above formulation of the criteriom for identitfication of sets may be
formalized as
A=B <= Vz(r € A< x € B).

This is one of the axioms of Set Theory, the Axiom of Extensionality. Obvi-
ously, the above formalization is in a formal language of first—order logic with
one non-logical symbol, the binary relation symbol €.

The Axiom of Extensionality has a direct consequence for sets without ele-
ments, namely that there exists at most one empty set. It is common practise
to denote this empty set, whose existence will be guaranteed by other axioms,
by 0.

This is about everything we can say about what sets are. We now rather
concentrate on how they behave and how we may build new sets from given
ones. To this end, Set Theory provides the following set of axioms. To simplify

notation, we use the generally accepted symbols and abbreviations:
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A € B denotes the fact that A is an element of B;

A C B (“A is subset of B”) denotes the fact that every element of A is

also an element of B;

We will write AU B to denote the union of A and B, i.e. the set which
contains exactly all the element in A or B; similarly, |JA denotes the
union of the elements of A, i.e. the set which contains exactly all the

elements contained in some element of A;

AN B to denote the intersection of A and B, i.e. the set which contains
exactly the elements that are both in A and in B; similarly, () A denotes
the intersection of the elements of A, i.e. the set which contains exactly

the elements contained in all elements of A
A and B are called disjoint if AN B = (J;
() for the set containing no elements;

P(A) for the powerset of A, i.e. the set of all subsets of A;

The standard universe of sets as we make use of in our mathematical studies

is in fact grounded on a rather simple set of axioms. These axioms together
formalize the Set Theory of Zermelo and Frinkel with Choice, ZFC for short. It

is only one of a big variety of theories intended to serve as a foundation of the

mathematical universe, but it is also the most generally accepted.

Axiom of Pairing
Axiom of Union

eparation (Comprehension)

Axiom of Regularity
Axiom of Infinity
Power set Axiom

The Axiom of Choice

For any sets z and y, there is a set containing both = and y as elements.
For any set x, there is a set z such that for any y € =, y C z.

For any set z and any formula ¢ in the formal language of Set Theory
having at most one free variable, there is a set, denoted by {y € = ; v(y)},

which contains all the elements of  which satisfy .

Any non—empty set x contains an element which is disjoint to .

There is a set = such that () € z and for any vy, if y € x, then y U{y} € =.
For any set x there is a set containing all the subsets of = as elements;

Given a set x of nonempty pairwise disjoint sets, there exists a set that
contains exactly one element of each set in z; alternatively, the cartesian

product of a non—empty family of non—empty sets is non—empty.
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Figure B.2: Kazimierz Kuratowski (1896-1980)

This set of axioms is clearly infinite, but it is also countable (a notion we
will only be able to define on the basis of these axioms ...) and it is of a simple
form, or more precisely, decidable. By this we mean that there is a rather
simple procedure to decide whether any given sequence of symbols from the
language of Set Theory is one of the axioms. But nevertheless the theorems
of this axiom—system provide (under the correct and intended interpretation)
astonishing results. Let us have a look at how the universe of sets is populated
with increasingly more complicated entities by use of these axioms.

That there is a set at all is a direct consequence of the Axiom of Infinity.
Constructions such as direct products, relations and functions are equally made
possible by these axioms, as we want to show in the next few paragraphs.

From the Axiom of Pairing, we may conclude that the bf ordered pair (z,y)
exists for any two sets z and y, where (z,y) is given by the following definition

originating from Kuratowsky:

(&, y):={{z} {z, y}}-

The main purpose behind this seemingly rather arbitrary definition is to
bring back some order in the otherwise order— and structure—less notion of sets.
In an ordered pair, we may uniquely identify the first and the second component.

This is formalized by the following result, whose proof is left as an exercise:
(x1,y1)=(x2,y2) if and only if z; = 25 and y; = yo.

Using ordered pairs, we may continue to define set-like objects which have
more structure than mere sets: Relations and functions. A relation, as should
be remembered, is a set of ordered pairs. To be more precise, a relation between
the sets A and B is a set of ordered pairs (a,b) with ¢ € A and b € B. A
function f from a set A to a set B, on the other hand, is a relation between A
and B such that for any a € A there is exactly one b € B such that (a,b)€ f.

The usual conventions for functions and relations apply, but to mention
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them all would turn this appendix into a book or module of its own. The
important point is this: Functions and relations between sets can be shown to
exist according to the axioms of ZFC, but not all of them are describable by
nice formulas. As to how many functions and relations exist between two sets,
is subject to additional axioms we will not discuss here. But nicely describable
ones are easily proved to exist on the basis of our axioms.

Having defined relations and functions, we may continue towards tuples and
families, direct products and direct powers. We may also show that the existence
of structures in the sense of Model Theory, algebras and ordered sets can be
taken for granted in our set—theoretically embedded universe.

But there are entities which provably are no longer sets since they are too big
or too general in nature. The entities we are talking about are called (proper)
classes, reflecting the idea that sets are a specialization of the notion of classes.
Thus all sets are classes, but not vice versa. The most prominent example of
a proper class is the class of all sets V. In fact, this class is to blame for the
arising of axiomatic Set Theory early in the last century, when Bertrand Russell
observed that the acceptance of V as a set leads to the following antinomy: If
V' is a set, then so is the subset R of all elements of V' which are not member
of itself,

B:={eV;z¢zx}.

There are two cases to consider: (1) If B € B, then B ¢ B by the definition
of B, so the assumption B € B leads to a contradiction. So we conclude (2)
B ¢ B. However, this is equally contradictive, since then (again by the definition

of B) B € B. So we arrive at the contradiction
B € Bif and only if B ¢ B.

The way out of this antinomy is to exclude the class V from the collection
of sets, since then B no longer is provably a set. To be more precise, we are
only allowed to accept sub—classes as sets if they are sub—classes of sets which
are separated from their parent—set by a formula in the language of axiomatic
Set Theory, which is exactly the content of the Axiom Scheme of Separation.

From the fact that the class of all sets V is a proper class, we find many
other examples of proper classes. Especially, as has been mentioned in Section
any class L—structures is a proper class. Also, any class of models (apart
from the empty class!) of a set ¥ of L-sentences is a proper class. The proof is
left as an exercise.

Finite sets such as (), {{{0},0}} are no real challenge to our imagination.
But matters tend to get a little more confusing and less intuitive when we start

dealing with infinite sets. But to be able to distinguish between finite and
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Figure B.3: Abraham Fraenkel (1891-1965)

infinite sets at all, we must have a measure for the size of sets, a measure of

counting the elements provided purely within the set—theoretical framework.

B.2 Ordinals, Cardinals

The concept of cardinality is an abstraction of the numbering and counting of
our everyday experience. Counting is a finite process by which we attach a
natural number (whatever that is) to a certain collection of entities or objects.
In Set Theory, the concept of cardinals (or cardinal numbers) is abstracting the
process of counting the elements.

Before we can define what a cardinal is, we need to know what an ordinal

is:

Definition B.2.1 If A is a set and R is a binary relation on A, R is said to
well-order A (or “R is a well-ordering on A”, or (A, R) is a well-order, or A is
well-ordered by R) if R is reflexive, anti-symmetric, transitive, total and every
non—-empty subset of A contains a minimal element with respect to R. Thus,

using infix-notation, (A, R) is a well-order if and only if
e RCAXxA,

e forall z € A, xRx;

for all z,y € A, xRy and yRz imply x = y;

for all z,y,z € A, xRy and yRz = zRz;

for all z,y € A, xRy or yRx;
e for all B C A, B # () there is a x € B such that for no y € B, yRz.

Thus, a well-ordering is an total, WellffoundedEI order in the sense of Chapter

Bl

IWe use well-founded here rather than noetherian to establish some connection to the
Axiom of Regularity which is sometimes also called the Aziom of Foundation.
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One of the key features of Ordinal Numbers will be that they are transitive
sets well-ordered by C, so this is a good moment to introduce the notion of a

transitive set:

Definition B.2.2 A set A is called transitive if every element of A is also a

subset of A, ie. ifx € Ajycx =y € A.

Definition B.2.3 A set A is an Ordinal (Number) iff the following proper-
ties hold;

(i) if b € A then b C A;
(ii) for all a,b € A , either a € b, b € a or a = b;

(iii) for all B C A, B # ), there is a b € B such that bN B = ().

The following observations provide an abundance of examples for ordinals:
() is an ordinal. If ¢ is an ordinal, then so is > (§) := U {¢}. If T is a set of
ordinals, then [T and (T are both ordinals.

The finite ordinals are defined by induction:

e () is a finite ordinal;
e if n is a finite ordinal, then so is > (£);

e no other sets are finite ordinals.

The finite ordinals mirror the process of counting as mentioned above. There-
fore it is usual to denote finite ordinals by numbers (or numerals) according to
the inductive rules 0 := @ and n 4+ 1 :=> (n). Via this definition, the natural
numbers are represented in Set Theory, and with a little additional work, we
are able to represent the whole arithmetic in the framework of Set Theory. But
this is not the aim of this chapter, our goal lies in the direction of infinity.

It is not very difficult to see that the set of finite ordinals is again an ordinal.
Of course this new ordinal (we call it w) is not a finite ordinal; as a matter of
fact, it is the smallest infinite ordinal in the sense that any ordinal which is not

finite contains w as an element.
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Appendix C

Exercises

C.1 Chapter ?7?

Exercise C.1.1 Show that, for a family (X;; i € I) (I #0)and m; : [[;c; Xi— Xi
the canonical projection onto the ith component, there is a very natural bijective

correspondence between [[,.; X; / ker 7; and X.

Exercise C.1.2 Show that for any filter F over the set I, the relation ~gz
defined on the direct product [],-; X; by

iel
(wisie~plyisiel) it {itel;z;=yteF
is an equivalence.

Exercise C.1.3 Show that P..¢S is a filter on S.

Exercise C.1.4 Show that the canonical embedding ¢ : X — X5/F de-
fined by ¢(z) := [{(x; s € S)] is 1-1 for any filter F.

C.2 Chapter

Exercise C.2.1 Show that in an ordered set,

(a) greatest and least elements of are unique, provided they exist;

(b) any greatest element of some subset S is a maximum of S, and any least

element of S is a minimum of S;

(c) maxima and minima need not exist for a given subset, and even if they

exist, they need not be unique.

169
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Exercise C.2.2 Show that in an ordered set, least upper bounds and greatest

lower bounds of subsets are unique, whenever they exist.

Exercise C.2.3 Prove the statements in Example especially, show that
there are no covers in (R, p), Inf {1/n;n € N} = 0 and that in Example [2| the

atoms are exactly the prime numbers while there are no coatoms.

Exercise C.2.4 Why do the special cases Sup () and Inf () coincide with Ly
and T respectively, provided they exist?

Exercise C.2.5 Let U # () be any set and pick a nonempty proper subset Uy
of U. Define S :={Z CU; Uy ¢ Z}. Show that with the order < given by
7y < Zy it Z1 D Zs, (S,<) is a Sup—semilattice but not an Inf-semilattice;

moreover, calculate the semilattice operation for (S, <).

Exercise C.2.6 Show that for any lattice (L, <) and all z,y € L,

z; and

Sup {z, Inf {z,y}}
Inf {z, Sup {z,y}}

x.

Exercise C.2.7 Show that for the divisibility order ¢ on N, Inf{m,n} =

g.c.d. of m and n and Sup {m,n} = lc.m. of m and n.

Exercise C.2.8 Show that the power set P(X) of any set X is a complete

lattice under the order of set—inclusion.

Exercise C.2.9 Show that every complete lattice L has a least element Ly,
and a greatest element Tt,.

Exercise C.2.10 Show that N with the order of divisibility is a complete lat-

tice.

Exercise C.2.11 Show that for any closure system C and any closure operator

C, C¢ is a closure operator and that C¢ is a closure system, and that moreover

CCC = C and Ccc = C

C.3 Chapter

Exercise C.3.1 Show that Mod Th and Th Mod are closure operators.
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Exercise C.3.2 Show that for any A, 5 € Str £ and ¢ Sen L,
A=Biff [AE ¢ iff B = ¢].

Exercise C.3.3 Show that if X ¢ with ¢ &€ L(X), then - .

Exercise C.3.4 Let £ be a formal language. Show that

(a) card Tm £ < card Fml £ = card Sen £;
(b) If £ is countable, then so are Tm £, Fml £ and Sen L;
(¢) if card £ is infinite, then card Tm £ < card £ = card Fml £;

(d) for any set X, if card L < card X, then card TmLx = cardFmlL =
card X.

Exercise C.3.5 Let £ be the language having < as only non-logical sym-
bol, and consider the two L-structures A := ({(0,1),(1,0)},<) and B :=
({(0,0), (1,1)}, <), where in both cases < is the point-wise ordering. Show
that there is a £-homomorphism that is both injective and surjective, but A

and B are not isomorphic.

Exercise C.3.6 Show that for a homomorphism n : A — B, the following

are equivalent:
(i) n is a L-isomorphism;

!is a £L-homomorphism;

(ii) n is injective and surjective and 1~
(iii) 7 is injective and surjective and

Ri(a1,...,ax) iff RE (n(ay), ..., n(axm))

for all relation-symbols R; of £ and all a1, ...,axq) € |Al.

Exercise C.3.7 Show that for any isomorphism n : A4 — B, the inverse map

n~! is an isomorphism from B to A

Exercise C.3.8 Treat the cases ¢ = R;(t1,...,tn) and ¢ = ¥ A4 in the proof
of Theorem 4.6

Exercise C.3.9 Write out the details in the proof of Lemma
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C.4 Chapter

Exercise C.4.1 Show that equipotency, as introduced in Section using bi-

jections, is an equivalence relation.

Exercise C.4.2 Since A is regarded as of smaller cardinality than B if there
is a injective mapping from A to B, what kind of mappings from B to A would
in an equally plausible way constitute the fact that B is larger than A?

Exercise C.4.3 How do we get to the contradiction in the Diagonal argument?

Exercise C.4.4 Show that for ¥ C Sen L, ¢ € Fml L and ¢ a new constant—

symbol not in L,
if, in LU{c},X F ¢ (x/c)then, in £, ¥ F ¢.
Exercise C.4.5 Show that for ¥ C Sen £ consistent,

(a) if ¢(x) € PropL and c is a new constant—symbol not in £, then ¥ U
{3p(z) — ¢(c)} is a consistent set of £ U {c}—sentences;

(b) if @y(x1),...,¢,(xn) € PropL and ¢, ..., ¢, are pairwise distinct, new

constant—symbols not in £, then

XU {3(,01(1'1) - 901(01)7 sy Hcpn(mn) - Spn(cn)}
is a consistent set of LU {cy,..., ¢, }—sentences;

(c) if Sis any set, {¢,(zs); s € S}C Prop £ and {cs; s € S} a set of pairwise

distinct new constant—symbols not in £, then
2U 3¢, (zs) = ¢s(cs) ;s € S}
is a consistent set of LU {cs; s € S}-sentences.

Exercise C.4.6 Show that for {3, ; s € S} aset of consistent sets of L—sentences

linearly ordered by C, (J,cg X is consistent.

Exercise C.4.7 Show that a sentence o € Sen £ having a model has a count-

able model.

Exercise C.4.8 Show that a (consistent) theory having only uncountable mod-

els cannot be axiomatized by countably many axioms or in a countable language.
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Exercise C.4.9 Which of the sets N, Z, Q, R, C, N? are countable?

Exercise C.4.10 Let C :={cg; 3 < r} be a set of cardinality » of (pairwise
distinct) constant—symbols. Let ' :={-c=¢"; ¢,¢’ € C,c # ¢'}. Show that for
any language £ and any Lo—structure A, if A =T, then card |A| > k.

Exercise C.4.11 Analyze the proof of Proposition to find out why the
model of ¥ has to be infinite.

Exercise C.4.12 Show that there is a set 3 of L-sentences (for an adequate
language £) such that A is a model for ¥ iff A has either exactly one or infinitely
many elements.

(Hint: Consider ¥ :={(Vzx =z)V-c = ; ¢, € C,c# '} for adequate C'.)

Exercise C.4.13 In the proof of Theorem [7.4.1} explain how the £'-structures
A have to be defined (w.r.t. the interpretations of the new constant symbols).

Explain in more detail why they exist.

C.5 Chapter 7?7

Exercise C.5.1 Show that the assignment a/, — b/, from the proof of Propo-

sition [6.2.2] does indeed define an isomorphism.

Exercise C.5.2 In the construction of the proof to Proposition [6.2.2] run the
first few steps with your favorite enumerations of Q and (0,1) N Q. (If you do
not have a favorite enumeration of (0,1) N Q, take the enumeration of Q and
restrict it to the interval (0,1).)

Exercise C.5.3 Showthat {( e R; 0< (<1} U{geQ; 1< ¢g<2}isadense

order without endpoints under the usual order.

Exercise C.5.4 Is it possible to apply the construction of the proof to Propo-
sition to show that, under the usual order,

(a) R~ {0} and R are not isomorphic;

(b) (ANQ,<) and Q are not isomorphic?
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C.6 Chapter [6]

Exercise C.6.1 Show that for any language £, Sen L is the only inconsistent
L~theory.

Exercise C.6.2 Show that any complete set of L—sentences is a L—theory.

Exercise C.6.3 Show that for L—structures A, B,
Th AC ThBiff A=B.

Exercise C.6.4 Show that any elementary class K is closed under elementary

equivalence.

C.7 Chapter

Exercise C.7.1 Is Zy x Zy — with operations defined by component — a field?

Exercise C.7.2 Show that an ultrafilter &/ over some set S is fixed at some

peSiff MU 0.

Exercise C.7.3 Show that U C P(S) is an ultrafilter over S iff U is a prime
filter over S, i.e. iff, for any U,V C S, UUV € U impliesU e U or V € U.

Exercise C.7.4 Show that if U/ is an ultrafilter over some set S and U € U
with U = Uy U...UU,, then U; € Y for some i €{1,...,n}.

Exercise C.7.5 Show that P..tN is a filter over N.

Exercise C.7.6 Let X # ), S :={s C X ; s finite} and T, :={s € S; z € s}
(for all z € X). Is {T, ; © € X} a filter or not?

Exercise C.7.7 Show that for any ultrapower A /U of a L-structure A, the
function n : A — A% /U given by n(a) :=(a; s € S),, is an embedding of A
into A% /U.

Exercise C.7.8 For n € N, find a L—sentence holding in a L—structure A iff

|A| has exactly n elements.

C.8 Chapter

Exercise C.8.1 Use the argumentation of to show that, for any language
L and for any K C Str £, if for any n € N thereis a A € Kg,, with card [A] >=n,

then Kg,) is not elementary.
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C.9 Chapter [9]

Exercise C.9.1 What operations are possible in an empty algebra?

Exercise C.9.2 Try to find group laws as in Example which characterize

groups among all algebras of type (3), or show that there are no such laws.

Exercise C.9.3 Using Remark [9.1.3] write a detailed proof for the fact that
a constant of A will be mapped to the corresponding constant of B under any

homomorphism 1 € Hom(A, B).
Exercise C.9.4 Find a simple example of two similar non—isomorphic algebras.

Exercise C.9.5 Verify for groups, rings and vector spaces that the respec-
tive definitions of homomorphisms match with the definition given in Definition
0:21] i.e. show that for example group homomorphisms coincide with homo-

morphisms of groups as universal algebras.

Exercise C.9.6 Show that any valuation h into an L-structure .4 determines
an L-homomorphism 71, : Tz — A from the term—algebra T/ into A, given
by n,,(t) := t4[h]. Also verify that if the language is functional, 1, is a homo-
morphism in the sense of Definition [9.2.1]

Exercise C.9.7 Show that if groups are considered as algebras of type (3) with
the operation m as defined in [0.1.4}4, the subalgebras are exactly the co-sets
(left or right) of ordinary subgroups of G and 0.

Exercise C.9.8 Prove Proposition [9.3.3] i.e. show that for all algebras A and
Bany n € Hom(A, B),

1. if S € Sub A, then 7n[S] € SubB;
2. if T € Sub B, then n~1[T] € Sub A;

3. the union of a chain of subuniverses of A is a subuniverse of A, and the

union of a directed system of subuniverse of A is a subuniverse of A.

Exercise C.9.9 Show that if (Sg; k € K) is any family of subuniverses of an

algebra A, then the set intersection [, Sk is a subuniverse of A.

Exercise C.9.10 Find an algebra A and subuniverses B and C of A such that

B UC is not a subuniverse of A.
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Exercise C.9.11 Consider the group (Z;+, —,0), and let X := {2}. Moreover
let G = {+, —,0} be the set of fundamental operations of Z.

Write out detailed calculations of G[X], G'[X], G*[X] and G*[X] according
to Definition ??. Is there a general way to describe G™[X]? And can you show
directly (i.e. without using Lemma ?? or a similar result) that (J,, .y G"[X] is

the set of even integers?

Exercise C.9.12

1. Verify in detail that (Z;+, —,0) is not locally finite.

2. Verify that ZY, the product of countably infinite many two—element groups
with operations defined componentwise, is locally finite but not finitely

generated.
3. Show that every finite algebra is locally finite.

4. Show that there is no infinite, locally finite, finitely generated algebra.

Exercise C.9.13 Show that the additive group of rational numbers has no

maximal subgroups.

Exercise C.9.14 Show that

1. In every algebra, the smallest subalgebra is the subalgebra generated by
0.

2. If there are nullary operations, A[}]=A[{c; c is a constant}].

Exercise C.9.15 Show that both (Q; 4+, —, 0) and (Z; +, —, 0) have no minimal

subgroups.

Exercise C.9.16 Show that the following constructions fall into the scope of

the definition of a direct product of (universal) algebras:
1. The direct product of groups.
2. The direct product of rings.
3. The direct product of fields.

4. The direct product of vector—spaces.

Exercise C.9.17 Show that the projections 7y associated with the notion of
direct products are surjective homomorphisms from er x Ay onto Ay for any

collection.
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Exercise C.9.18 Let B and Ay (k € K) be similar algebras, and g, : B — Ay
a surjective homorphism for each k£ € K. Show that there is a uniquely deter-
mined surjective homomorphism g : B —]], o x A satisfying g, = mp o g for
all k € K.

Exercise C.9.19 Show that h : A — B is a homomorphism from A into B
iff {{a,h(a)); a € A} is a subuniverse of A x B.

C.10 Chapter

Exercise C.10.1 Define a relation ¥ on Q by a¥b if and only if a — b € Z.
Show that

1. ¥ is an equivalence.

2. 9 is compatible with + and —.

3. ¥ is not compatible with -.

4. 9 is a congruence on the additive group (@Q;+, —,0) but not on the ring

<Q1 +7 T 07 1>

Exercise C.10.2 Show that if ¢ is a congruence on A, then my : A — A /¢

is a surjective homomorphism.

Exercise C.10.3 Prove Proposition For any algebra A, the congru-

ences on A are precisely the kernels of the homomorphisms with source A.

Exercise C.10.4 Modify the proof of Theorem [10.1.5] to show that for any
n:A— B, nA] 2 A /kern.

Exercise C.10.5 Show that for congruences ¥, p € Con A, ¥/p is a binary
relation on A and ¥/p € Con A.

Exercise C.10.6 For 9,p € ConA, show that n : (A /p)/(¥/p) — A /Y

with 7([[a] ) :=[a], is well-defined and an isomorphism.

P]n/p

Exercise C.10.7 Which of the following statements is true?

1. For any algebra A, any ¥ € Con A and any subset B C A, B” is a

subuniverse of A.

2. For any algebra A and any ¥ € Con A, the assignment B +— B” defines

a closure operator on A.
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Exercise C.10.8 Show that n : B /(9N B2) — B? /(¥ N B*”) with

n([blynp2) = [b]mBﬁ?-
is well-defined and an isomorphism.

Exercise C.10.9 Show that for a normal subgroup N of a group G, the relation
Uy on G with a¥nb if and only if aN = bN is an equivalence relation.

Exercise C.10.10

1. Is the relational product commutative? Is it associative?
2. What if we restrict ourselves to equivalences on some set A?

3. Given two equivalences 1, p on some set A, is the relational product ¥ o p

always an equivalence?

4. Show that for ¥ € Eq A, Yo d = 1.

Exercise C.10.11 Show that A4 is the unit element with respect to the rela-
tional product o for any set A. On the other hand, find a set A and R C A x A
such that Ro R~ # Ay4.

Exercise C.10.12 Show that for 91,95 C A2, we have
(a) Y109, =95 ov !
(b) 91 C Oy iff 971 C 95t
Exercise C.10.13 Show that for ¥ € Eq A, we have 9~ ! = 9.

Exercise C.10.14

1. Does Sup © = |J© imply that O is directed?

2. Does Sup © = |J © hold for directed sets © of equivalences?

Exercise C.10.15 Complete the proof of Proposition [10.2.8] i.e. show that for
any set O of congruences on an algebra A and E :={dpo...09,; n € N,dy,..., 9, € O},

1. 9 C|YE for any ¥ € 6;

2. |JZ is a congruence;
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3. Ygo...09, CSupO for all n € N and all J,...,9, € O.

Exercise C.10.16 Show that for 91,95 € Con A, the following are equivalent:
(i) 91 0s = Yo 0¥y;
(ii) Sup {1,092} = 91 0 Jo;
(iii) ¥4 0¥y C 99 0 V4.

Exercise C.10.17 Show that n : [¢, V4] — Con A /9 with n(p) := p/? is a

lattice-isomorphism.

Exercise C.10.18 Show that if A is an algebra and © C Con A, then Sup © =
0(U9).

Exercise C.10.19 Show that all but finitely many congruences on Z are of the
form 0({a,b,)) and find the exceptions.

Exercise C.10.20 Show that the generation of congruences defines a closure

operator, i.e. show that
(i) RCO(R),
(ii) 6(6(R)) = O(R) and
(iii) R C S implies 8(R) C 0(S)
for all subsets R, .S of some algebra.

Exercise C.10.21 Show that for any congruence ¥, the set {#(R) ; R C ¢, R finite}

is directed.

Exercise C.10.22 Which of the equations in Proposition hold if “con-
gruence” is replaced by equivalence (and consequently generation of congruences

by generation of equivalences)?

Exercise C.10.23 Let a be a compact element of a complete lattice. Show
that if Sup C > a for a chain C' C A, then ¢ > a for some ¢ € C.

Exercise C.10.24 Find proofs for the following statements:
(a) Every complete lattice has at least one compact element.
(b) Finite lattices consist of compact elements exclusively.

(¢) The compact elements in the complete lattice (P(X), C) are exactly the
finite Y C X.

Exercise C.10.25 Find an example of a non—algebraic complete lattice.
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C.11 Chapter
Exercise C.11.1 Prove Proposition [11.1.4] i.e. show that

L. If (L, <) is a lattice (as a poset), then (L;Supc,Inf<) is a lattice (as an
algebra).

2. If (L;U,M) is a lattice (as an algebra), then the two order-relations <,
and <p as defined in Proposition [11.1.2| are identical and (L, <)) is a

lattice (as a poset).
3. The transformation is mutually connected by
<L7 SLIS>:<L; §>

and
(LiU<,, MNey) = (L, M)

Exercise C.11.2 Show that if & and § are congruences on some algebra, then
Inf and Sup of a and 8 computed as equivalences as in Example [11.1.5|1| are

indeed congruences again.

Exercise C.11.3 Let L = (L;1,) be a lattice and let < be the order stem-
ming from M and U in the sense of Proposition [11.1.4 Show that z < 2’ and
y<gy imply zMy<z'My and zUy <z’ Uy, ie.

M:L?— Land U : L? — L are order—preserving.

Exercise C.11.4 Show that any lattice satisfying D (cf. Definition [11.2.1)

also satisfies D, and vice versa.

Exercise C.11.5 Find out which of the following finite lattices are distributive:

2, N5, M3, B; (cf. Example [3.1.16)).

Exercise C.11.6 Find out which of the following finite lattices are modular:

2, N5, M3, B; (cf. Example [3.1.16)).
Exercise C.11.7 Show that a lattice L = (L; M, ) is modular iff
(zNz)Uy)Nz=(zN2)U(yMNz)

for all z,y,z € L.
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Exercise C.11.8 Show that in a distributive lattice any element has at most

one complement.

Exercise C.11.9 Show that in a chain, only the top and bottom elements have
complements, so chains considered as lattices are not complemented if they have

more than two elements.

Exercise C.11.10 Show that for any infinite set X, the lattice with all finite
and cofinite subsets of X as its carrier set and with the operations of set union

and intersection is a Boolean lattice.

Exercise C.11.11 Which open subsets of R have an open complement in R?

And which open subsets of R? have an open complement in R??

Exercise C.11.12 Show that M3, as depicted below is a lattice where exactly
1y, and L have complements, and where L serves as a pseudocomplement of
everything except itself.

3

I3

e

Exercise C.11.13 M‘EJU be the collection of open subsets of R which are con-
tained in the open interval (—2,2) but do not contain (—1,1), together with all
intervals of the form (=2 — 1/n,2+ 1/n), and @ and R. Show that ordered by
set inclusion, ¢/ is a meet semilattice with N as Inf but not a lattice since, e.g.,
(—1.5,0) and (0,1.5) have no Sup within /.

Exercise C.11.14 Let L< be the formal language having the binary relation—
symbol < as its only non-logical symbol. Show that the class of lattices is
basic-elementary by finding an appropriate set of L<—sentences X, such that

Mod ¥y, is exactly the class of lattices.
Exercise C.11.15 Let N be the set N enriched by a new element T, and set
r<gyiff[z,yeNandz <ylory=T

for all z,y € N.
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(a) Show that <y is an order on N and that (N, <g) is a complete lattice.

Let U be an ultrafilter over N containing all cofinite subsets of N, and let
A :=NV/i{. Show that

(b) Ais alattice with greatest element T 4 := (T, T, T,...); and least element
O_A = <0,0,O7 .. .>u.

(c) all elements of A except T 4 and 04 have an upper and a lower cover.

(d) (0,1,2,...)y is an upper bound of N :={m; n € N} in A, where m :=

(nym,n, .. Hy.

e if b € |A| is an upper bound of N, then so is the lower cover of b. (Hint: If

such a lower cover ¢ were not an upper bound of N, then for some 7 € N,

m < ¢ <n+1, from which we conclude ¢ =7 or ¢ = n+ 1. But then b,

being the upper cover of ¢, could not be an upper bound of N.)

(e) N does not have a supremum in A (and the set of upper bounds of N has

no infimum).

Exercise C.11.16 Let L4 be the four element chain, and let Lyt be the

lattice resulted from adding a new least element 1 and a new greatest element

T to Ly. Show that the map from Ly to Ly |+ given by 0 — 1, 1 +— T, a—a

and b +— b is an order-homomorphism but not a lattice-homomorphism.

C.12

C.13

C.14

C.15

Chapter 77
Chapter 77?7
Chapter 77

Chapter

Exercise C.15.1 Show that from the axiom of pairing, using First—order Logic,

we can proof that the ordered pair of any two sets exists.

Exercise C.15.2 Show that for any sets x1, x2,y1, y2,

(x1,y1)=(22,¥2) if and only if z; = 2 and y; = y».
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Exercise C.15.3 Show that for any formal language £ and any consistent set
Y of L-sentences, Mod X is a proper class. (Hint: Take any model of ¥ and any
element a in the universe of this model. Replace a by an arbitrary set and show
that the relations, functions etc. of the structure may be modified in such a
way that the result is again a structure. The claim follows by the arbitrariness

of the set and the Axiom of Union.)
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PCS,

span X, [37]

Sub A,

Sup, @

Sup, 27]

Sup —semilattice,

T

Tmy L/%,

a(s) (in direct products),

ay (in direct products),

as (in direct products),

hy (for valuations in direct prod-
ucts),

hs (for valuations in direct products),
0]

u <, [27

v > u, 27]
(Dedekind-) finite,
(Dedekind-) infinite,

Los, 03]

absorption identities,
algebra,

algebraic closure operator, [140)
algebraic lattice, [140
antichain, 27]

antimonotonic, [35]
antisymmetric relation,
Archimedean property,
arity, [T14]

assignment, [17]

associative (operation), [143

atom, [27]
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atomic formula,

automorphism,
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Axiom of Infinity,

Axiom of Pairing,

Axiom of Regularity, [167]

Axiom of Union,

Axiom Scheme of Separation (Com-

prehension), [167

basic-elementary class,
Boolean algebras,
boolean lattice, 148

bottom,
bound (occurrence of a variable),

cardinal (number),
cardinality of a language,
cardinality of a structure,
carrier (of a relation), [7]
carrier (of an order),
categorical product,
chain,

chain of subuniverses, [[2]]
closure operator,

closure system,
co—domain, [T1§|

co-finite,

co—set, [120]

co-domain, [4]

coarser (congruence), [132
coatom, [27]

combinatory algebra,
commutative(operation), [143
compact element in a lattice, [140]
Compactness (Theorem),
comparable,

compatible,

complete (set of sentences),
complete lattice,
Completeness (Theorem),
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Comprehension, Axiom Scheme of,
167

congruence, [12§]

congruence relation, [I2§]

congruence—permutable (algebra),

congruence—permutable (class of al-
gebras),

consistent, [I8]

constant symbol (in formal languages),
et

Correctness (Theorem),

countable set, 59

countably infinite set,

De Morgan algebras, [I152]
deductive closure, [70]

designated elements, [L15
Diagonal Argument, [58|

direct power (of algebras),
direct product (of algebras),
direct product (of structures),
directed system of subuniverses, [121
distributive (lattice),
divisibility order,

domain, [4

dual order,

Elementary class,
elementary equivalent, [37]
empty algebra,
equipotency (of sets),
equipotent (sets),
equivalence relation, [7]
extended reals, [30]

extensive map, [31]

fip., B

filter, [9]

finer (congruence), [132
finitary operations,
finite (set),
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finite intersection property,
finitely generated algebra,
finitely generated subuniverse, [122)
fixed ultrafilter, [8]

follows semantically,

formal language,

formula (of a formal language),
Fréchet—Filter,

Frattini algebra, [122]

free (occurrence of a variable),
free ultrafilter, [82]

function,

function symbol (in formal languages),

14
fundamental operations,

Galois—connection,
generated congruence, [I38]
generated filter,
greatest element, 25] 27]
greatest lower bound,
group, [I10]

group laws,

Heyting algebras, [152]
homomorphic image, [T1§]
homomorphism (of algebras), [118

Homomorphism Theorem, [129

idempotent map,
idempotent(operation), [143
incomparable, [27]
inconsistent, [I§]

infimum,

infinite (set),
interpretation (of a symbol),
interpretation (of a term),
interval,

interval (in a lattice),
inverse of a relation, [I34]

isomorphic lattices, [148

INDEX

lattice,

lattice (algebra),

lattice-homomorphism, [I54]

lattice-isomorphism,

lattices with pseudocomplementation,
1501

least element, [25] [27]

least upper bound,
left co-set,

lower bound,
lower cover,

lower end, [27]

Main Theorem on Ultraproducts,
map, [3]

mapping, [3]

maximal subalgebra,
maximally proper filter, [82]
maximum, [25]

meaning (of a term),

minimum, [25]

Model Theoretic,

modified assignment, [I7]

monotonic map, [31]

negatomic formula,
noetherian order,
noetherian poset,
non-generator, [I23]
normal subgroup, [132
nullary operations,

occurrence of a variable,

open sets (in a topological space),
149

order(-relation),

order—isomorphism, [148

ordered set,

p-algebras, [I50]

p-semilattices, [L51
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partial algebra,

partially ordered set, 23]
permutable (congruence), [137
poset, 23]

Post algebras,

Power set Axiom, [I67]

prime filter,

principal congruence, (139

proper filter, [8]
pseudocomplement,
pseudocomplemented lattice, [I50]

pseudocomplemented semilattice, [L51

quotient algebra,
quotient of congruences, [130]

reduced power,

reduced product,

reflexive relation,

reflexivity, [7]

relation symbol (in formal languages),
a4

relational inverse, [134]

relational product, [I33]

right co-set,

ring, [T16]

rough sets, [L50)

satisfaction (of a formula),
scope, [15]

semantic consequence, [I7]
semi-lattice (algebra),
semilattice—homomorphism,
semilattice-operation, [T43]
sentence, [I5]

Separation, Axiom Scheme of,
Set Theory of Zermelo and Frénkel
with Choice,
similar algebras, [114]

source, [I1§]

source (of a function),

189

spanned sub—space,

strict order, [24]

Strong Completeness (Theorem),
structure, [I6]

sub-lattice, |155

subalgebra,

supremum, [27]

symmetry, [7]

target, [[1§]

target (of a function),
term-structure, [20]

terms (of a formal language),
Theory,

top, [27]

total (order),
totally ordered set,

transitive relation,

transitivity, [7]

type, [114]

ultrafilter,

ultrapower,

ultraproduct (of structures),
unitary ring, [I16]

universal algebra, [1174]
universal quantifier,
universe (of an algebra),
universe (of an order),
upper bound, [27]

upper end,

valid, [I7]

valid in a structure,

valuation,
variable assignment,

variable—free term, [14]

well-founded, [25]
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