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Introduction

As the title Model Theory, Universal Algebra and Order insinuates, the present

module is mainly compiled from three parts. So why not make three di¤erent

modules or papers? The answer may be put in one single word: Structure.

What is structure in the context of mathematics? There are several answers to

this, but the one we would like to lie emphasis on is to understand structure

as giving a form to something otherwise formless, thereby exhibiting an implicit

meaning.

This is all very nice and eloquent, but how does it translate to the �elds of

Mathematics lending their names for the title of this module? For Model Theory,

the answer is a very direct one: Model Theory is the Theory of structures,

where structures are sets with additional operations, relations and especially

designated elements called constants. First Order Logic provides languages to

speak about these structures on a formal level, and the connection between

structures and language is so close that we are able to draw conclusions from

one to the other and vice versa.

There is another meaning of structure which comes close to Order: Structure

as providing a way to arrange something otherwise formless. In this sense,

ordered sets are sets equipped with a binary relation (the order) structuring the

underlying set. On the other hand, ordered sets are none other than examples

of structures in the sense of the previous paragraph.

Remains the question where structure comes in with Universal Algebra: Al-

geras in the sense of Universal Algebra are again structures in the sense of

Model Theory, the language speci�ed by the type of the algebra. Moreover, as

in the case of ordered sets, the fundamental operations lay a structure upon

the universe of the algebras, even some sort of division into parts if we consider

congruences.

Thus, the three �elds Model Theory, Universal Algebra and Order Theory

share a close relation with the notion of structure in one or more senses of the

word. But this is clearly not the only relation between them. Universal Algebra

may be regarded as the theory of structures for functional languages, i.e. �rst�

ix



x INTRODUCTION

order languages without relation symbols. Ordered sets, on the other hand,

are relational structures, i.e. a �rst�order language being able to describe their

basic properties must be equipped with at least one relation symbol.

Therefore we could regard Universal Algebra and Order Theory as special-

izations or sub�branches of Model Theory. But one look at the table of contents

reveals that ordered sets are mentioned quite early in the development. The rea-

son for this lies in the fact that, being very fundamental and rather simple in

their de�nition, ordered sets qualify as nice examples for structures in the sense

of Model Theory. Moreover the possibility to show algebraic aspects shows that

we even need not limit ourselves to examples of relational structures. Ordered

sets serve at least in two ways1 : As examples of structures for simple languages,

and as examples of algebras in the sense of Universal Algebra.

The last introductory remark concerns the role of Set Theory: Being a (clas-

sical) branch of Mathematics, Model Theory is based on Set Theory the same

way as are Group Theory or Calculus, i.e. proofs of Model Theoretical assump-

tions are done in the framework of Zermelo�Fränkel Set Theory. However, this

very Set Theory is formulated in a very simple formal language which can be

regarded from the point of view of �rst�order logic, so in principle, Set Theory

is an example of a theory in the sense of this module and allows thus for struc-

tures and models. This slightly disturbing (seeming) circularity will be partially

treated in the appendix of this module.

How To Use This Module

In principle there is nothing to say against using the three parts which make

up this module separately, i.e. the reader may restrict her or his attention

exclusively to the chapters and sections dealing with Model Theory or Ordered

Sets. However, the three subjects of this module are interdependent in several

ways, so the best procedure to ensure a deeper understanding surely is to read

them all.

1There are more, of course: E.g., whenever any kind of structure is involved, substructures
will have to be considered as well, and these again, when looked at from the point of view of
set�inclusion, form an ordered set displaying nice properties.



Chapter 1

The General Background

The aim of this chapter is to provide some general background knowledge of

concepts which will be used in the di¤erent contexts.

1.1 Set Theory, Featuring the Axiom of Choice

We will now introduce what little of set theory is needed to grasp the set theo-

retical notions used in this paper.

The notation we use for Set Theoretical notions is common standard, e.g. [
and

S
will stand for (binary and arbitrary, respectively) union of sets, likewise

\ and
T
for intersection, � for the subset�relation (equality not excluded) and

P(S) will denote the power�set (the set of all subsets) of the set S.
A set is called �nite if for some natural number n, there is a bijective

function (to be de�ned below) from this set into set f0; : : : ; n� 1g, and in�nite
otherwise. In�nite sets are further distinguished by their �degree of in�niteness�,

a concept formalized by the cardinality, a notion which unfortunately is too
complicated to be introduced in detail for the moment. The same holds for the

notion of (proper) classes. Every set is a class, but there are classes which no
longer are sets; those are called proper classes. For the moment it is enough to

think of classes as collections which are too big (or too general) to be sets; the

classic �infamous�example is the �set�of all sets, which rather turns out to be

the class of all sets. Other examples include the class of all cardinal numbers,

the class of all singleton sets, the class of all groups, rings, �elds etc, the class

of L�structures for any formal language L, and any Mod� for any consistent
set of sentences � (as will be shown later).

Clearly, the classical axioms of set theory are not to be questioned nor scru-

tinized. Thus we consider the implications of the existence of in�nite sets such

as ! and we will never worry about what axiomatic complications may be in-

1



2 CHAPTER 1. THE GENERAL BACKGROUND

volved when dealing with constructions such as set�unions, powersets or even

instantiations of the schema of replacements. For the moment we may as well

simply have faith in the fact that set theory can be axiomatized by giving a

(rather simple, as far as syntax is concerned) set of sentences (axioms) in a for-

mal language which in its simplicity is almost boring, since its sole non�logical

constituent is the binary relation�symbol 2.
Whenever we mention a model for a set of sentences, we are building this

model in our universe, which, in turn, is actually relying on another theory

formalized in �rst�order logic. From this point of view, Model Theory deals with

translations from arbitrary theories into Set Theory, and consistency�arguments

should always be relativized to the (unveri�ed) consistency of Set Theory. But

clearly nobody who is serious about dealing with Model Theory is keeping this

�detail� in mind; you would not expect somebody working with real�valued

calculus to handle numbers as in�nitely nested intervals either, would you?

Still, we feel obliged to make a few remarks on behalf of the axiom which in

itself was and still is subject of arguments about constructivism: The Axiom of

Choice. As should be well remembered, the Axiom of Choice (AC) postulates

something along the line of

�The cartesian product of a non�empty family of non�empty sets is

non�empty.�

or

�Given a set of sets all of which are non�empty, there exists a func-

tion which, for each of these sets, picks one element.�

Although intuition cries for undisputed acceptance of these statements when

the sets involved are from everyday�s experience (products of the sets of natural,

rational, real numbers or �nite sets), things tend to be less clear for exotic cases,

i.e. when the sets involved are way beyond the horizon of countability, let alone

of �niteness. It should be well known to any mathematician that the AC is

neither provable nor refutable from the rest of the axioms of set theory which

constitute the so called axiomatization of Zermelo and Fraenkel, provided this

axiomatization is in fact consistent, which in itself is still open to discussion.

We will not argue about the acceptability of the AC. In fact, the AC is central

to some of the constructions we will use, e.g. the ultraproducts in chapter 7. We

will make use of the AC not in its incarnations mentioned above, but in form of

the so called Zorn�s Lemma (ZL). Unfortunately, although ZL is in general easier

to use than the AC1 and closer to the construct aimed at, formulating ZL is a

1This phenomenon mirrors the fact that the AC involves less structure and thus less in-
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bit more complicated since it involves notions from Order Theory (see Chapter

3 for the de�nitions of �ordered set�, �chain�, �upper bound� and �maximal

element�):

�If every sub�chain on some ordered set P has an upper bound, then

P has a maximal element.�

An instructing exercise in set theory is to show that the AC and ZL are in

fact equivalent.

Another notion of set theory that we will use is the cardinality of a set and

cardinal numbers. For the purposes of this module, think of two sets having the
same cardinality if and only if there is an exact correspondence (a bijection)
between their elements; i.e. we could write down two lists of their respective

elements of the same �length�. The length of this list would then correspond to

the cardinality of the sets.

We write cardX for the cardinality of a set X. In this sense N, Q and Z
have the same cardinality (they all are countable), while R is �bigger� than
all of them (uncountable) and P(N) again has the same cardinality as R. We
will use the symbol @0 for the countable cardinality.
Since not any two sets have the same cardinality, we need to compare the

cardinalities (or sizes) of sets, and thus we write cardX � cardY if and only if

there is an injective function (to be de�ned below) from X to Y .

1.2 Functions, Mappings and Operations

We assume that the reader is familiar with the concept of a function (or mapping

or map). For the sake of completeness, we note that a function is speci�ed by

two sets X and Y and a set of ordered pairs

f = f: : : ; hx; yi; : : :g � X � Y

such that for any x 2 X there is a unique y 2 Y such that hx; yi2 f , i.e.

for all x 2 X there is a y 2 Y such that hx; yi2 f

and

hx1; y1i; hx2; y2i2 f and x1 = x2 implies y1 = y2:

formation on the side of the structures, while when applying ZL, a major part of work is
already done by �preparing� the structure under consideration, i.e. by �nding the requested
constructs that ful�ll the premises of ZL. With the AC, the premises are rather weak, they do
not presuppose a structure. Thus, information mostly comes later when trying to use choice
functions or the like to �nd the eventual result originally aimed at.
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In this module, for f as above, we will write

� domain or source of f , dom f , for X, and co�domain or target of f ,
cod f , for Y ;

� the image of f , im f , for the set ff(x) ; x 2 dom fg, and if Z � dom f ,
the image of Z under f , f [Z], for ff(x) ; x 2 Zg;

� the value of x under f , f(x), for the unique y such that hx; yi2 f ,

provided x 2 dom f ; in this case f is said to map x to y, which is

denoted by f(x) = y or f : x 7! y;

� f : X �! Y to denote that f has domain X and co�domain Y ;

� idX for the identity map on X, i.e. the unique map idX : X �! X

with idX(x) = x for all x 2 X.

The following distinct cases are assumed to be well�known:

� A function f is said to be injective (or one�to�one) if and only if

for any x1; x2 2 dom f; f(x1) = f(x2) implies x1 = x2;

� for Z � Y , f is said to be onto Z if and only if

for any y 2 Z; f(x) = y for some x 2 dom f;

i.e. if and only if imF = Z;

� if f is onto cod f , i.e. if im f = cod f , then f is simply called onto or
surjective;

� f is said to be bijective or a bijection if and only if f is both injective
and surjective.

If f is injective, then there is a canonical inverse function

f�1 : im f �! dom f

given by

f�1(y) = x i¤ f(x) = y:

If f is injective, f�1 is also injective, and of course dom f�1 = cod f if and only

if f is onto and hence a bijection.

Please remember that, for a �nite set X and f : X �! X, f is injective if

and only if f is surjective if and only if f is bijective.
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The notion of operations will be used to denote the special case where
dom f = (cod f)n for some n 2 N (for the notion of direct product, see 1.3

below). Therefore, operations are the only functions which can be iterated,

by which we mean the following: if f : X �! Y and g : Y �! Z, then g � f
stands for the product of f and g, i.e. g � f : X �! Z with g � f(x) =
g(f(x)). � is associative in the sense that f � (g �h) = (f � g) �h, provided the
notation is meaningful regarding domains and co�domains. If f : X �! X,

then the iterations fn : X �! X (n 2 N) are de�ned inductively over n by
f0 = iddom f and fn+1 = f � fn.

1.3 Cartesian Products and Projections

Cartesian or direct products are a widespread technique of constructing new

structures from given ones. If a collection of structures shares some speci�c

property, then products constructed from these structures may or may not share

this property, which is expressed by saying that the property is / is not preserved

under the construction of direct products. Both cases will be documented in

the di¤erent chapters of this module. For the time being, all we want to do is

recall the de�nitions and �x some notations in the context of direct products.

ForK 6= ;, let fAk ; k 2 Kg be any collection of sets. Their direct productQ
k2K Ak is de�ned to be the set of all maps a : K �!

S
k2K Ak satisfying

a(k) 2 Ak for all k 2 K.
Q
k2K Ak is obviously empty whenever at least one

of the sets Ak is empty and the axiom of choice implies the converse to hold as

well.

The Ak�s are called the factors of the direct product
Q
k2K Ak. A direct

product where all the factors are identical (or, as will be the case in the context

of universal algebras, isomorphic) is called a direct power and is written as
AI instead of

Q
i2I Ai.

The following notational conventions will be useful: Maps in
Q
k2K Ak will

be written by listing their values, i.e. as h: : : ; a(k); : : :i or hak ; k 2 Ki, and re-
ferred to as K-tuples. If K is �nite, cardK = m, we use the usual notation for

m-tuples ha1; : : : ; ami, and write also A1 � : : :�Am instead of
Q
k2f1;:::;mgAk.

If the length m of an m-tuple is clear from the context, we may simplify

ha1; : : : ; ami to ~a. This is especially handy if the inputs of some fundamen-
tal operation f are concerned where the arity is clear; in this case, we will

sometimes write f(~a) instead of the more precise f(a1; : : : ; ar).

It should be remembered that from a cartesian product we may extract the
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single factors via the so called (canonical) projections, denoted by �j , i.e.

�j :
Y
i2I

Ai �! Aj ; �j(hai ; i 2 Ii) := aj

If for all i 2 I fi : B �! Ai, we will use the �family�notation� hfi ; i 2 Ii
to denote the function from Y to

Q
i2I Xi de�ned by

hfi ; i 2 Ii : Y �!
Y
i2I

Xi hfi ; i 2 Ii (y) :=hfi(y) ; i 2 Ii :

Thus, in the light of the aforementioned, h�i ; i 2 Ii is nothing other than
idQ

i2I Xi
.

In the case of direct powers, there is something like a counterpart of the

canonical projections, the (canonical) embedding, mostly denoted by �. Thus
� : A �! AI is de�ned by �(a) :=ha ; i 2 Ii=h: : : ; a; a; a; : : :i. The image �[A]
of A under the embedding � is a specially denominated subset of the direct

product, the diagonal �AI of AI :

�AI := �(A) =fa 2 AI ; �i(a) = �j(a) for all i; j 2 Ig :

Do not be confused if in the further developments you will �nd the symboliza-

tion �A: This is just a short form for �A2 which is common for the identity

equivalence relation on A.

1.4 Equivalence Relations

Equivalence relations (or equivalences for short) occur in many verses of the

mathematician�s lore. Dividing a collection in parts, thereby respecting certain

rules, is found e.g. wherever functions from one set to another are under scrutiny.

Belonging to the same part of the partitioning is the same as �being equivalent�

under some equivalence.

Since equivalence relations are binary relation on some set, we must �rst �x

the notions concerning binary relations. If X is any set, then a binary relation
# on X is a set of ordered pairs of elements2 of X, # � X �X. Because binary

2 In Set Theory, relations are regarded as given by their extensions, so a relation is the
same as the set of all pairs that are de�ned to stand in relation. This characteristic of
relations is sometimes called the extensional view, as opposed to the intensional view, where
relations are identi�ed with their meaning, so that relations actually may be extensionally
equal but still intensionally di¤erent. In order to distinguish relations intensionally, we must
look at their meaning, and we are bound to leave the �eld of Mathematics and get involved
with philosophical questions. As an example, consider the set of non�negative reals, R+0 ,
and the relations R1 and R2 given by xR1y if and only if y = x2 and xR2y if and only if
x =

p
y. Extensionally, the relations are both equal to the set fhz; z2i ; z 2 R+0 g, so they

may not be distinguished from the extensional point of view. But intensionally they di¤er,
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relations are sets, the operations set�union, �intersection etc. can be applied to

them.

In�x notation is common practice with binary relations as you may know

from earlier experiences with � or 2. Therefore, we usually write x#y rather
than hx; yi2 #.

De�nition 1.4.1 A binary relation # on some set X is called an equivalence
relation i¤, for all x; x1; x2; x3 2 X, the following three conditions are met:

(i) x#x (re�exivity)

(ii) x1#x2 =) x2#x1 (symmetry)

(iii) [x1#x2 and x2#x3] =) x1#x3 (transitivity)

EqX is used to denote the set of all equivalence relations on X.

Please remember that for # � X �X, X is called the carrier of #.

The notation x � y mod # for x#y is also common for equivalence relations.

The set [x]# :=fy 2 X ; y#xg is called the #�equivalence class or the #�block
of x. If the actual choice of # is clear from the context, the subscript # is

sometimes dropped, thus [x] will stand for [x]#.

The de�nition of equivalence directly implies that equivalence�classes [x]

and [y] (for x 6= y) are either disjoint or identical, thus dividing X into parts

that have no elements in common. This is what is meant by �f[x] ; x 2 Xg is a
partitioning of X�, and consequently the equivalence classes are partitions
of the set X. The set f[x]# ; x 2 Xg is called the quotient (set) of X relative
to # and is denoted by X=#.
The process of assigning to an element x 2 X its equivalence class [x] de�nes

a function �# : X �! X=# which is usually called the (canonical) projection
or (canonical) map (associated to #). It is easy to see that �# is surjective.
Every equivalence uniquely determines a partitioning of the underlying set

X. Interestingly, the other direction works equally well: Any partitioning of X

gives rise to a unique equivalence relation by de�ning to elements equivalent if

and only if they belong to the same partition. Partitioning and equivalences are

dual notions.

Example 1.4.2 To mention but two elementary examples, on any set X, there
are a smallest (w.r.t. �) equivalence relation fhx; xi ; x 2 Xg and a largest
equivalence relation X �X. It is common practice to denote these by �X and

rX respectively.

since calculating the square�root is in general more complex than calculating the square, so
we might say that R2 is of higher complexity than R1. Of course the same remarks apply to
functions as well, since functions are nothing but special kinds of binary relations.
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A very natural place to look for equivalences is in the context of functions

(mappings, morphisms). By declaring to be equivalent all those arguments

x 2 X which are mapped by a function f : X �! Y to the same function�

value y0 = f(x0), we are de�ning an equivalence relation, usually called the

kernel of f , denoted by ker ( f); i.e.

ker ( f) =fhx1; x2i2 X �X ; f(x1) = f(x2)g :

Vice versa, starting from an equivalence relation #, its natural projection is a

function whose kernel is exactly #. To sum up:

Remark 1.4.3 Every equivalence relation # gives rise to a function �# (the
canonical projection associated to #) de�ned by �#(x) := [x]#, which has

exactly # as its kernel.

We will come across a multitude of equivalence relations in the following

chapters, but mostly will impose some sort of �structure�in the form of opera-

tions or relations upon the carriers, and the equivalences of interest will respect

this additional structure, i.e. they will be compatible (to be de�ned later) with

the operations and relations; in this case we will call the equivalence relations

congruences (cf. Homomorphism Theorem 10.1.5).

1.5 Reduced Products

The constructions of the last two sections combine nicely to a variant of prod-

ucts, the quotients of direct products under equivalence relations.

De�nition 1.5.1 If hXi ; i 2 Ii is a family of sets taking indices in some (non�
empty) set I, and if � is an equivalence relation on the direct product

Q
i2I Xi,

then the set
Q
i2I Xi = �=f[hxi ; i 2 Ii]� ; hxi ; i 2 Ii2

Q
i2I Xig of equivalence�

classes under � is called the reduced product of the family hXi ; i 2 Ii
under �.
If Xi = Xj =: X for all i; j 2 I, the reduced product under � is called a

reduced power under � and is denoted by XI= �.

Exercise 1.5.2 (To test your ability to see the obvious:) Show that, for a

family hXi ; i 2 Ii (I 6= ;) and �i :
Q
i2I Xi�! Xi the canonical projection

onto the ith component, there is a very natural bijective correspondence betweenQ
i2I Xi = ker �i and Xi.
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Of course, both in model theory and in universal algebra, we will be more

speci�c in our choice of equivalence relations. There is a procedure applicable

to both �elds which involves the notion of a �lter over the index set.

De�nition 1.5.3 Let S be any non�empty set. A system F � P(S) of subsets
of S is called a �lter over S i¤ the following conditions are met:

(i) U1; U2 2 F =) U1 \ U2 2 F ,

(ii) U 2 F ; U � V � S =) V 2 F , and

(iii) ; 62 F 6= ;.

To put it in mathematical prose, �lters are sets of subsets of some set, and

they are

(i) closed under super�sets (�upper�closed�),

(ii) closed under intersection,

(iii) a proper, non�empty subset of the power�set.

Examples of �lters are easy to �nd: If x 2 X, then fY � X ; x 2 Y g is a
�lter over X; also fXg is a �lter over X.
Filters give rise to equivalence�relations in a canonical way.

Exercise 1.5.4 Show that for any �lter F over the set I, the relation �F
de�ned on the direct product

Q
i2I Xi by

hxi ; i 2 Ii�F hyi ; i 2 Ii i¤ fi 2 I ; xi = yig2 F

is an equivalence.

For a less trivial example of a �lter, let S be an in�nite set and PcofS be the
set of all subsets Y � S such that S r Y is �nite.

Exercise 1.5.5 Show that PcofS is a �lter on S.

Expressed in terms of �PcofS , we see that hxs ; s 2 Si�PcofShys ; s 2 Si if
and only if fs 2 S ; xs = ysg2 PcofS, i.e. if and only if fs 2 S ; xs 6= ysg is
�nite, i.e. if and only if x and y agree on almost all components.

Whenever we construct a reduced product over some equivalence �F which
stems from a �lter in the sense of 1.5.4, we will denote the resulting reduced

product by
Q
s2S Xs =F (instead of

Q
s2S Xs = �F ) and call it the reduced

product under F . Accordingly, the canonical projection ��F will be written

as �F . For the reduced power, similar notations apply.
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Finally, as a counterpart to the canonical projection �F in the case of the

reduced power XS=F , we would like you to check as an exercise that the canon-
ical embedding � : X �! XS=F de�ned by �(x) := [hx ; s 2 Si] is injective
for any �lter F .



Chapter 2

Logic Through the Looking
Glass

The aim of this chapter is to review the concepts of �rst�order logic that are

indispensable for the understanding of the present paper. For the sake of brevity

we will omit all proves and leave out some details of de�nition, especially where

these details do not present one but of many possibilities to describe the desired

notion.

2.1 What You Should Remember From First�

Order Logic

Dealing with model theory the way we plan to relies on a certain amount of

knowledge of the (more or less) basic concepts from �rst�order logic. Therefore,

we suggest that the reader becomes acquainted with the following notions, all

of which have been dealt with in detail in Module N4.1:

1. Formal languages for �rst�order predicate calculus, henceforth simply

called formal langages.

2. Structures for formal languages.

3. Terms, formulae, sentences and proofs in formal languages.

4. Satisfaction of a formula in a structure under a valuation.

5. A model of a formula or a set of formulae.

11
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Figure 2.1: Kurt Gödel

6. The term�structure of a formal language, as it is used in the proof of

completeness.

The notational conventions, abbreviations and de�nitions we will follow (un-

less otherwise stated) are:

� Formal languages (denoted by the calligraphic letter L with or without
subscripts) are characterized by their non�logical symbols which consist

of constant�, relation�and function�symbols. All other symbols used to

build well�formed expressions constituting the syntax are common to all

languages. In fact, the actual form of the non�logical symbols does not

matter, since a language is fully speci�ed by the arity�functions � for

relation�and � for function�symbols and the index set K for constant�

symbols.

� Formal languages are containing equality as a logical symbol :=; thus we
should call our formal languages �formal languages for �rst�order logic

with equality�. Accordingly, an appropriate set of axioms for the notion

of formal deductions is assumed to include axioms for equality (cf. 2.1

below).

� Structures are denoted by calligraphic letters such as A;B; C : : :, formulae
by lower case Greek letters �; �; : : : ; '; #; : : : and sets of formulae by capital

Greek letters �;� : : :.

� Formalisation of �rst�order logic and its proofs is done by using a Hilbert�
style axiom system, which consists of axioms and inference rules. In this
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system proofs are understood to be �nite tupels of formulae obeying cer-

tain constraints; the axioms are

� For a formal language L, TmL denotes the set of L�terms, FmlL denotes
the set of L�formulae, SenL denotes the set of L�sentences, i.e. formulae
without free variables.

� Also, CT(L) denotes the term�structure of L, i.e. the set of L�terms that
do not contain any variables. Moreover, if � � SenL, then CT(L) =� is
used to denote the set of equivalence�classes of CT(L) under the equiva-
lence relation of equality provable from �, where two terms t1; t2 2 CT(L)
are equivalent i¤ � ` t1

:
= t2.

� Sentences su¢ ce, i.e. results are mostly of interest when formulated for
sentences instead of the more general formulae; nevertheless formulae con-

taining free variables will take a central role in proofs and lemmata.

� As is common practice, ` denotes (syntactical) provability or deducibility,
j= denotes the relation of satisfaction of a formula. (j= will also be used to
denote semantical implication, which, by Goedel�s Completeness Theorem,

is in fact equivalent to the syntactical provability.)

� Consistency is a property of sets of sentences, namely that not everything
is provable from a certain set. A set of sentences that is not consistent is

called inconsistent.

Equally vital for the understanding of the concepts introduced in this book

are the following properties of �rst�order logic, proved in the very same source:

1. Compactness:
A set � of sentences has a model i¤ every �nite subset of � has a model.

2. Completeness:
If � ` ' and A j= �, then A j= '

3. Correctness:
If � 6` ', then there is a model of � which is not a model of '

Being a rather fundamental branch of mathematics, Model Theory relies on

little or no prerequisites. Nevertheless, there are some basic concepts from Set

Theory and algebra, the latter because of the large supply of examples drawn

from classic theories of groups, rings or �elds. Knowledge of the di¤erences

between a proper class and a set, of the notion of cardinalities and concerning

the possibilities of axiomatizations of Set Theory are thus of some help, but not

really necessary for the understanding of our treatment of Model Theory.
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Now for the good news: The reader is NOT assumed to be familiar with

any of the concepts of Universal Algebra or Order Theory. Model theoretical

constructions will be introduced in just enough detail to leave room for lots of

exercises. Since we are not introducing something entirely new to the world of

mathematics, but are merely trying to show ways of getting used to some ideas,

the emphasis will lie on providing the students with opportunities to get their

hands dirty and write their own detailed proofs to deepen the understanding of

the concepts formerly unknown to them.

2.2 Syntax

Among the main subjects of discourse in this module are the constructs based

on languages: On an intuitive level, a (formal) language (from the syntactical

point of view) is a collection of strings formed from a �xed supply of (pairwise

distinct!) elements called symbols by a �xed set of rules (grammar).

De�nition 2.2.1 A formal language is de�ned by a triple L = h�; �;Ki
where, for some sets I and J , � : I �! N and � : J �! N, and K is some set.

I, J and K are the sets of indices of relation�, function�and constant�
symbols respectively, and � and � are the arity functions of the relation�and
function�symbols, respectively; i.e. �(j) is the arity (number of arguments)

of the relation symbol Ri, while �(j) is the arity of the function symbol fj .

Moreover we assume we are given

� countably in�nitely many variables v0; v1; : : :

� an equality�symbol :=

� logical connectives ^;:;8

� auxiliary symbols (brackets)

De�nition 2.2.2 The L�terms of the formal language L = h�; �;Ki are de-
�ned inductively as follows:

� every variable vi and, for every k 2 K, the constant symbol ck are L�terms

� if j 2 J and t1; : : : ; t�(j) are terms, then fj(t1; : : : ; t�(j)) is a L�term

A L�term is called variable�free if it does not contain any variables, i.e.
i¤ it is built up using constant�and function�symbols exclusively.

Brackets will be placed to provide unique reading of the terms. Also, freeing

ourselves from the chains of the somewhat bulky pre�x notation, we will tend to

use in�x notation where binary function symbols (i.e. of arity 2) are concerned.
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De�nition 2.2.3 The L�formulae of the formal language L = h�; �;Ki are
de�ned as follows:

� if t; t0; t1; : : : ; t�(i) are terms, then t
:
= t0 and Ri(t1; : : : ; t�(i)) are L�

formulae (so called atomic�formulae)

� if ' and  are L�formulae and vn is a variable, then :', ' ^  and 8vn'
are L�formulae.

(The same notational conventions will be followed that were mentioned for

terms.)

A negatomic L�formula is a L�formula which is either atomic or the
negation :# of an atomic formula #. A variable�free negatomic L�formula
is of course a negatomic formula not containing any variables, i.e. negatomic

formulae built up from variable�free terms exclusively.

The scope of the (universal) quanti�er 8vn in 8vn' is '. An occurrence1

of a variable vn is called free if it does not lie in the scope of a quanti�er 8vn.
An occurrence that is not free is called bound. We talk of variables being free
or bound in a formula to indicate that there are free or bound occurrences of

this variable, respectively. A formula containing no free occurrences of variables

is called a sentence.

The symbol � is used to denote syntactical equality (�equal as strings�) of

terms or formulae.

The following abbreviations will be used:

� ' _  :� :(:' ^  )

� '!  :� (:') _  

� '$  : (' ^  ) _ ((:') ^ (: ))

� 9vn' :� :8vn:'

For a formal language L, we let TmL, FmlL and SenL denote the set of all
L�terms, L�formulae and L�sentences, respectively.
Logic deals with proofs and deductions, so next we want to start building

well�formed sequences of formulae that we will call (formal) proofs. A formal

proof is an object which has to obey certain rules of formation as well, but since

the actual way we restrict ourselves by such rules is (1) by no means unique and

(2) strictly a matter of syntactic preferences and proof theoretic intentions, an

explicit description of a formal system of proof cannot be our goal here. Let us,

1A variable occurrence is best thought of as the information describing what variable
appears at which position inside a string.



16 CHAPTER 2. LOGIC THROUGH THE LOOKING GLASS

for the moment, just �x that we are given a set of formulae called axioms and
a set of rules, where a rule is an �instruction� how to prolong a given proof
to a longer one. Then, for any set � of formulae (sometimes called premises),
we de�ne a (formal) proof from � to be a �nite sequence of formulae such

that each component of this sequence is either an axiom, an element of � or

is deducible from components with smaller indices by application of one of the

rules. We moreover call a sequence a proof of ' from � i¤ it is a proof from

� and ' is its last component, and we denote this fact by � ` '. If there is
a proof of ' from the empty set of premises, then we write ` ' and call ' a

theorem. (This notion of formal de�nition of provability is called a Hilbert�
style axiomatization of �rst�order logic, thus hinting at the fact that there
are other ways of doing this formalizing.)

The actual implementation of this notion of �formal proof�is actually rather

arbitrary, although we are to pay attention that completeness and correctness

(see below) are complied with, since otherwise there is no sense in even start

trying to do model theory. But showing faith in our system of proof being

both complete and correct, we may impose some further properties such as

recursiveness or recursive enumerability of the set of rules and axioms.

2.3 Semantics

To enable us to do some model theory, we most certainly need to know what

a model is. Our �rst aim is to establish an intimate connection between our

notion of proof (formalized in whatever which way) and the notion of satisfaction

and truth in some model, to be de�ned in an instant. We therefore need the

de�nition of the semantical constructs we will deal with, together with the means

of interpreting the syntactical elements:

De�nition 2.3.1 For a formal language L = h�; �;Ki, a L�structure is a
family A = hA; hRAi ii2I ; hfAj ij2J ; hcAk ik2Ki where

� A =: jAj is a non-empty set, the universe of A,

� for every i 2 I, RAi � A�(i)

� for every j 2 J , fAj : A�(j) �! A

� for every k 2 K, cAk 2 A.

RAi , f
A
j and cAk are called the interpretation of Ri, fj and ck, respectively,

in A.
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De�nition 2.3.2 A variable assignment function, or assignment or val-
uation, into the L�structure A is a function h from the set of variables into jAj.
If x is a variable and a 2 jAj, then the modi�ed assignment h[

�
v
a

�
] is de�ned

to be the same assignment as h, except that h(x) = a. Clearly, a modi�ed

assignment is an assignment.

De�nition 2.3.3 For a L�term t, a L�structure A and a valuation h, the in-
terpretation (or meaning) tA[h] of t in A under h is de�ned by2

(ck)
A[h] := cAk ; (vn)

A[h] := h(vn)

(fj(t1; : : : ; t�(j)))
A[h] := fAj (t

A
1 [h]; : : : ; t

A
�(j)[h]):

De�nition 2.3.4 For a L�formula ', a L�structure A and a valuation h, we

de�ne the relation j= of satisfaction, notation A j= '[h] (�A satis�es ' under

h), by Noetherian induction as follows:

� A j= t1
:
= t2[h] i¤ tA1 [h] = tA2 [h],

� A j= Ri(t1; : : : ; tn)[h] i¤ htA1 [h]; : : : ; tAn [h]i 2 RAi ,

� A j= :'[h] i¤ not A j= '[h],

� A j= ' ^  [h] i¤ [A j= '[h] and A j=  [h]],

� A j= 8vn' i¤ for all a 2 jAj, A j= '[h
�
vn
a

�
].

If not A j= '[h], then we write A 6j= '[h].

The notions of satisfaction, validity in a structure, validity and model gen-

eralize to sets of formulae in the obvious way, e.g. A j= � i¤, for all ' 2 �,
A j= '.

De�nition 2.3.5 Let ' be a L�formula, A a L�structure and h a valuation
into A. If A j= '[h] for all valuations h, we say that ' is valid in A, or A is
a model of ', notation A j= '. If a L�sentence � is valid in all L�structures,
then we call � valid, notation j= '.

De�nition 2.3.6 For a L�sentence � and a set of L�sentences �, we say that '
is a semantic consequence of or follows semantically from � or � implies
' semantically, notation3 � j= �, i¤, for all L�structures, A j= ' provided

A j= �.
2Do not let yourself be confused by some symbols appearing on both sides of the de�ning

equation. This is merely a justi�cation for baptizing the structure�s relations, functions and
constants the way we did.

3Some textbooks use `̀ instead of j= to distinguish notationally the two notions of satis-
faction and semantical implication which, in the light of completeness, turn out to be not that
di¤erent.
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2.4 Completeness

We have thus de�ned the de�nitional foundation on which to build the main

body of mathematical logic. To show that a notion of proof is suitable for

our purposes, we must show that it is accurate enough in the sense that the

provability is an exact formalization of the semantical implication. This is the

crucial point in the main theorems of any introductory lecture on �rst�order

logic, and it is faced mostly in the form of the so called Completeness Theorem

and the Correctness Theorem:

Theorem 2.4.1 (Completeness) Let L be a formal language, � � SenL and
� 2 SenL. Then

� j= � implies � ` �:

Theorem 2.4.2 (Correctness) Let L be a formal language, � � SenL and
� 2 SenL. Then

� ` � implies � j= �:

Since our de�nition of sentence or even theorem does not mention meaning-

fulness in the context of contradiction, we might want point out the following

distinction:

De�nition 2.4.3 � � SenL is called inconsistent or contradictory i¤� ` �
for all � 2 SenL. If � is not inconsistent, we call it consistent.

There are several equivalent formulations of this. Since the above is the most

common, we chose it as a de�nition, but actually we would prefer the following

characterization which could serve as a de�nition of inconsistency as well:

A set � of sentences is inconsistent i¤ � ` :v0
:
= v0 (where v0 is

simply the �rst of our in�nitely many variables).

The point in preferring the latter formulation to most others is that it is

less depending on the language than the former. So what we should be doing

�rst thing we learned that there are inconsistent sets is actually to prove that

inconsistency does not rely on the language. But, having been taught that

�rst�order logic satis�es completeness, we might argue semantically, and clearly

having a model is not a matter of language.

Please note the slight shift in formulation after we de�ned satisfaction: We

no longer talk about formulae but restrict our attention to sentences. This is

justi�ed by a result that can be found in most lectures and textbooks dealing

with mathematical logic and may be summarized with by �sentences su¢ ce�,

i.e. results about provability and satisfaction remain valid when formulae are
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replaced by their universal closure, i.e. the formulae pre�xed by just enough

universal quanti�ers to bind all free variable occurrences. Since this is subject

to mere syntactical investigation, we restrain from going into more details at

this point.

Completeness and correctness attain an even more impressive formulation

using the notion of consistency:

Theorem 2.4.4 (Strong Completeness) Let L be a formal language, � �
SenL. Then

� has a model i¤ � is consistent.

One direct consequence of Completeness must be mentioned at this point,

since it will be used and, moreover, reformulated semantically in the course of

further action: The Compactness Theorem. Compactness should ring a whole

Christmas trees full of bells to the reader who has ever dealt with topology,

order theory, Set Theory or a somewhat more universal breed of algebra than

mere group theory. In math, compactness is usually denoting the possibility of

reducing an in�nite �something� to a �nite part of itself without losing infor-

mation or characteristics of the original entity. The most famous (or notorious)

instantiation of this phenomenon is without reasonable doubt the compactness

of topological spaces. Roughly speaking is a topological space called compact

if, whenever it can be written as the union of subsets (which are bound to some

further constraints, but which we need not concern with here), then it is already

equal to the union of a �nite subset of this collection of sets. Compactness in the

context of �rst�order logic is similar in the overall statement, but contrary to

topological compactness, it is a property true for all systems of �rst�order logic

�tting the de�nition we gave above, thus we do not speak of the compactness

of some systems, but we merely formulate the following result:

Theorem 2.4.5 (Compactness) Let L be a formal language, � � SenL.
Then

� has a model i¤ every �nite subset of � has a model.

The proof of this theorem, which provides a lot of simpli�cation on the part of

consistency arguments for arbitrary sets of sentences, is almost disappointingly

simple once we are equipped with completeness: Inconsistency of � would mean

deduction of something contradictory, and deductions are de�ned to be �nite

sequences!
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2.5 Term Structures

The proves of the theorems of correctness and completeness rely on the actual

formalization of �formal prove�. Still, certain techniques are bound to be used

despite this freedom of choice, and at least one of these techniques even will

pop up now and then in model theory as a means of constructing certain min-

imal models. The reader familiar with correctness proves will most surely feel

remembered by parts of the next

De�nition 2.5.1 Let L be a formal language and � � SenL.

1. If V is a set of variables, TmV L denotes the set of L�terms t such that all
variables in t are contained in V . On the set TmV L, de�ne the equivalence
relation �=� by t1 �=� t2 i¤ � ` t1

:
= t2. Moreover, for t 2 TmV L, let [t]

denote the �=��equivalence class of t.

2. De�ne the term�structure over V modulo � to be the structure

TmV L=� de�ned by

� jTmV L=�j := f[t] ; t 2 TmLg

� h[t1]; : : : ; [t�(i)]i 2 RTmV L=�
i i¤ � ` Ri(t1; : : : ; t�(i))

� fTmV L=�
j ([t1]; : : : ; [t�(j)]) := [fj(t1; : : : ; t�(j))]

� cTmV L=�
k := [ck]

3. CT(L) := CT(L) =;

If V = ;, then TmV L is the set of all closed L�terms and often denoted by
CT(L). The closed term structure CT(L) =� is in fact of great importance since
it constitutes the model constructed in most proofs of the correctness theorem

(over a language which is enriched by enough constant symbols to witness all

existential sentences).

If V is the set of all variables, then of course TmV L is of course TmL.
Clearly, calling TmV L=� the term�structure is a misuse of terminology and

might be slightly misleading, since TmV L=� need not be a structure as de�ned
above. But with some additional precautions these obstacles may be circum-

navigated. We simply have to take care that there are actually any terms of

the desired kind, i.e. we must provide at least one constant or one variable for

the term�structure to be a real structure. This proviso lacks importance in the

context of the proofs of completeness, since there we are dealing with sets of

sentences that, by some preceding constructions, are sentences of a language

we expanded by adding constants that actually witness all possible existentially

quanti�ed formulae provable from our original set of sentences �. We do not
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expect for the reader to understand every single detail of this rather talkative ex-

posé (or even believe all of it), but we like to point out that the constructions we

will encounter in our developments circling the Löwenheim�Skolem�Theorems

are close relatives of the term�structures de�ned above.
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Chapter 3

Ordered Sets

In this chapter we present a �rst approach to the subject of order and partially

ordered sets. Being one of the most fundamental notions in mathematics, order

is elementary for Model Theory and omnipresent throughout model theoretic

considerations. Constructs stemming from ordered sets are used in model the-

oretic treatments. Ordered sets themselves are used as examples for structures

and algebras.

Moreover, ordered sets o¤er two di¤erent aspects, a relational aspect (as sets

equipped with a binary relation) and an algebraic aspect (as sets with binary

operations, i.e. as algebras, cf Section 9.1, De�nition 9.1.2). These two aspects

interact nicely and provide the opportunity to reformulate results proved for

one aspect in the context of the other.

3.1 Order and (Semi-)Lattices

To establish nomenclature and notation, we include the relevant de�nitions.

De�nition 3.1.1 Given any set X, an order(�relation) on X is a binary

relation � on X which is

� re�exive (x�x for all x 2 X),

� antisymmetric (x�y and y�x together imply x = y for all x; y 2 X) and

� transitive (x�y and y�z together imply x�z for all x; y; z 2 X).

The pair X :=hX; �i is then called an ordered set or poset, the latter
expression re�ecting the older nomenclature partially ordered set . Orders are

customarily denoted by symbols like �, �, v or similar. X is called the carrier

23
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or universe of X. If the order is clear from the context, we will sometimes not

distinguish between X and X.

De�nition 3.1.2 Let � be an order on the set X.

1. � is total i¤ x � y or y � x for all x; y 2 X, in which case hX;�i is called
a totally ordered set or chain.

2. The dual order of � is the order � on X de�ned by x � y if and only if

y � x (for all x; y 2 X).

3. The strict order associated to �, usually denoted by the symbol <, is
de�ned by x < y if and only if both x � y and x 6= y.

Let us establish a brief connection to Logic and Model Theory. We no-

tice that in a formal language L with at least one binary relation�symbol, we
can express the conditions for re�exivity, antisymmetry and transitivity by L�
sentences �r, �a and �t respectively. Thus, a poset is an L�structure StrX
satisfying f�r; �a; �tg. Clearly, totality is expressible as well, so the class of
posets and the class of totally ordered sets are both describable in terms of

�rst�order logic. In later chapters we will denote this fact by calling these

classes elementary (cf. Chapter 4, De�nition 4.1.6).

Example 3.1.3

1. De�ne the binary relation � on R by x�y i¤ there exists z 2 R such that
x + z2 = y. Then � is an order on R �in fact, it is the natural one, x�y
i¤ x � y.

2. De�ne � on N by x�y i¤ there exists z 2 N such that xz = y. � is the

divisibility order on N, usually denoted by xjy.

3. In our context, a very common type of ordered set has its carrierX consist-

ing of certain designated subsets of some set U . Its order is then de�ned

by the subset relation � in U .

4. (For those with some exposure to Set Theory.) A set � is an ordinal i¤

every element of � is also a subset of � (i.e. � is a transitive set) and the

binary relation 2 is a total order on �.1

1Readers familiar with some of the more exotic variants of set theory will notice that we
implicitly presupposed the axiom of foundation to hold for our set theoretical universe. This
is common practice, which is why we mention it only in this footnote.
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5. For any formal language L we have a natural order on the set of L�
expressions, the order of subexpression. Specializing to terms and formu-

lae, we might consider sets of terms or formulae to be ordered by the

sub�term� or sub�formula�relation, respectively. Even if this example

seems to be a bit farfetched, later de�nitions and results will justify its

mention here.

De�nition 3.1.4 Let S be a subset of an ordered set hX;�i.

1. s 2 S is called greatest element of S if x � s for all x 2 S;
s 2 S is called least element of S if s � x for all x 2 S.

2. s 2 S is called a maximum of S if, for all x 2 S, s � x implies s = x;

s 2 S is called a minimum of S if, for all x 2 S, x � s implies s = x.

Clearly, by antisymmetry, greatest and least elements of S are unique, pro-

vided they exist. Any greatest element of S is a maximum of S, and any least

element of S is a minimum of S. Maxima and minima need not exist for a given

subset, and even if they exist, they need not be unique. (Exercise: Prove these

statements!)

Example 3.1.5

1. N with the natural order � has a least element as does any subset of N.
But greatest elements and maxima only exist for �nite, non�empty subsets

of N.

2. Consider some non�empty set X with � being the diagonal of X, i.e.

� =fhx; xi ; x 2 Xg. Then, � is indeed an order on X. Any element

x 2 X is both a minimum and a maximum for any subset S � X with

x 2 S, but only singleton subsets fxg have a greatest and a least element.

Later experiences will teach us that not all notions of interest are expressible

in �rst�order logic, not even in such a (seemingly!) simple theoretical context

as the one of ordered sets. For instance, the statement �every subset has a

supremum�exceeds the limits of �rst�order logic. Another such notion is given

in the following de�nition.

De�nition 3.1.6 An order � on some set X is called noetherian or well�
founded if, for every non�empty subset S � X, there exists a minimal element

of S. We then say that hX;�i is a noetherian order or a noetherian poset.



26 CHAPTER 3. ORDERED SETS

Figure 3.1: Emmy Noether (1882-1935)

In structural induction, we made use of a fundamental property of noetherian

orders before we even knew about them. The next proposition is a justi�cation

in retrospect.

Proposition 3.1.7 (Noetherian induction) Let hX;�i be a noetherian poset.
Assume S � X is non�empty and for all x 2 X,

[for all y; if y � x and y 6= x, then y 2 S] implies x 2 S:

Then S = X.

Proof. By way of contradiction, assume hX;�i is noetherian and S � X

satis�es

[for all y; if y � x and y 6= x, then y 2 S] implies x 2 S; (�)

but S 6= X. Then XrS 6= ;, i.e. we �nd a minimal element x0 2 XrS. Then,
for any y with y � x0 and y 6= x0 we have y 2 S by minimality, but this implies
x0 2 S by (�), contradicting the choice of x0.
Natural induction is a special form of noetherian induction; structural induc-

tion for terms or formulae of formal languages is another example. If you know

your way through Set Theory and ordinals, you will be familiar with the fact

that every ordinal is noetherian (ordered by 2), and if we assume the Axiom of

Foundation to hold, every set is noetherian.

Using structural or natural induction as a tool to prove statements is only

valid if the respective order (sub�formula, sub�term, � etc.) is noetherian.

For the set N of natural numbers and � this is well-established, and for con-

structs in the context of formal languages, we must rely on the �niteness of the

expressions.

Let us have a look at some notions which are vital for the algebraization of

orders (cf. Chapter 11).
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De�nition 3.1.8 In a poset hX;�i, an upper bound of S � X is an element

u 2 X such that s � u for all s 2 S. A least upper bound of S is an upper
bound u of S satisfying u � v for every upper bound v of S. It is clear by

the antisymmetry of � that least upper bounds are unique whenever they exist
(the proof is left as an exercise). A least upper bound of S is also called the

supremum of S and written Sup S (or Sup�S to emphasize the order relation).

If SupX exists, it is called the greatest element or top of X and is sometimes

written >X.
Analogically, a lower bound of S (in X) is an element l 2 X such that l � s

for all s 2 S. The notions of a greatest lower bound, of S alias in�mum
of S, and a least element of X, alias bottom of X, are de�ned analogically

with notations Inf S (or Inf�S) and ?X.

Note that the special cases Sup ; and Inf ; coincide with ?X and >X re-

spectively, provided they exist. (Exercise: why?)

De�nition 3.1.9 For X = hX;�i and u; v 2 X we de�ne the interval [u; v]
to be the set fx 2 X ; u � x � vg (which is empty unless u � v); similarly, the

lower end determined by u is (u] :=fx 2 X ; x � ug and correspondingly the
upper end is [v) :=fx 2 X ; v � xg. We say that u is a lower cover of v (and
v an upper cover of u) i¤ [u; v] = fu; vg; this situation is frequently denoted
by u � v or v � u. An upper cover of ?X is called an atom of X, similarly, a
coatom is a lower cover of >X. Elements u; v 2 X are said to be comparable
i¤ u � v or v � u, incomparable otherwise, the latter situation being denoted
by k. A subset S � X such that ukv for all u; v 2 S is called an antichain.

Example 3.1.10
1. In Example 3.1.3 1 the set fr 2 R; 2�r2g has no in�mum while Inf V = 0

for V = f1=n;n 2 Ng. There are no covers in (R; �), and no incomparables
since (R; �) is a chain.

2. In Example 3.1.3 2 we have ?N = 1 and >N = 0. The atoms of (N; �) are
precisely the prime numbers (which form an antichain), while there are no

coatoms.

Exercise 3.1.11
Prove the statements in Example 3.1.10; especially, show that there are no covers

in (R; �), Inf f1=n;n 2 Ng = 0 and that in Example 2, the atoms are exactly

the prime numbers while there are no coatoms.

Ordered sets are relational structures, i.e. they are sets endowed with some

fundamental relations, as opposed to algebras which are sets endowed with
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some fundamental operations. Under certain circumstances however, an order

relation may be described by a (binary) operation on the same carrier set, and

vice versa. The key fact is that the supremum of any two elements of an ordered

set is uniquely determined whenever it exists, and so is the in�mum. We capture

this situation in the following de�nition.

De�nition 3.1.12 An ordered set S =hS;�i is called a Sup �semilattice i¤
Sup�fx; yg exists for all x; y 2 S; it is called an Inf�semilattice i¤ Inf�fx; yg
exists for all x; y 2 S. An ordered set that is both a Sup�semilattice and an

Inf �semilattice is called a lattice.

Note that in a Sup �semilattice S the supremum of any �nite, non�empty

subset U � S exists (why?), and so does the in�mum of any �nite, non�empty

subset in an Inf �semilattice.

Example 3.1.13 Let U 6= ; be any set and pick a nonempty proper subset
U0 of U . De�ne S :=fZ � U ; U0 6� Zg. The ordered set hS;�i is an Inf �
semilattice but not a Sup�semilattice, and we get Inf fZ1; Z2g = Z1\Z2. Under
the dual order (Z1 � Z2 i¤ Z1 � Z2) S will be a Sup�semilattice but not an

Inf �semilattice. (Exercise: What is the corresponding semilattice operation in

this case?)

Clearly, suprema and in�ma are closely connected, and thus, in an ordered

set where they both exist, we observe the following properties.

Lemma 3.1.14 For all x; y,

Sup fx; Inf fx; ygg = x; and

Inf fx; Sup fx; ygg = x:

Proof. Exercise.

Example 3.1.15
1. For the divisibility order � on N (Example 3.1.3 1), Sup and Inf of

any �nite subset of N exist, since Inf fm;ng =g.c.d.2 of m and n resp.

Sup fm;ng = l.c.m.3 of m and n. (Exercise: Verify this!)

2. (cf. Example 3.1.3 2) A special type of lattice is given by a collection

L of subsets of some set X such that U; V 2 L implies that U \ V and

U [ V both are in L. The suprema and in�ma in the lattice resulting
2g.c.d. of m and n: greatest common divisor of m and n, i.e. the greatest number d such

that both m=d and n=d are integers.
3 l.c.m. of m and n: lowest common multiple of m and n, i.e. the lowest number d > 0

such that both d=m and d=n are integers.
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from ordering L by set�inclusion coincide, in this case, with set union and
intersection.

3. (See also 9.3.4.) To prevent you from forming the impression that set�

union and �intersection are the only examples of lattice�suprema and �

in�ma, consider the following examples: If X is a group (ring, vector

space, topological space, boolean algebra), then the collection of sub�

groups (sub�rings, linear sub�spaces, closed sub�spaces, sub�algebras) or-

dered by � is a lattice. The in�mum corresponds with set�intersection,

again, whereas the supremum is a little bit more complicated than mere

set�union, since e.g. the union of two subgroups need not again be a

sub�group; rather can Sup of two sub�groups be shown to be exactly

the smallest sub�group containing the two sub�groups. If we look at this

from another angle this is exactly the sub�group generated by (sub�ring

generated by, linear hull of, topological closure of, sub�algebra generated

by) the set�union of the sub�groups (sub�rings, linear sub�spaces, closed

sub�spaces, sub�algebras).

A important tool for working with orders are (Hasse) diagrams, especially
for �nite orders or �nite parts of arbitrary orders. Given such an order P , its

diagram consists of of small circles in the plane, representing the elements of

P , and straight line segments, representing the covering relation in P . More

precisely, the circles representing u; v 2 P are joined by a line segment exactly

if u � v, and in this case the circle representing v must be strictly above the

circle representing u (in the natural orientation of the plane). Moreover, no

other circles are incident with this line segment.

Example 3.1.16 Here are some examples:
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2 is the smallest non�trivial ordered set. It has 2 elements and clearly is a

lattice (as are the other three examples depicted).N5 andM3 are lattices which

will be of special interest in the context of modularity and distributivity (cf.

Section 11.2). Finally, B3 is also known as the boolean algebra with 3 atoms,

which hints at the fact that it is another kind of algebraic structure; simple

calculations show that it is also a lattice.
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3.2 Complete Lattices and Closure Operators

Completeness is another important property lattices sometimes have. It is not

an algebraic property in the sense that, although it is formalized in the language

of the lattice�s order�relation, it is not expressible using the algebraic aspect

(Sup and Inf ) of the lattices. Moreover, completeness is not expressible by

means of �rst�order logic.

De�nition 3.2.1 A lattice L =hL;�i is complete i¤ Sup�A and Inf�A exist
in L for any subset A � L.

In particular, every complete lattice L has a least element ?L and a greatest
element >L. (Exercise: Why?)

Example 3.2.2

1. Every �nite lattice is a complete lattice.

2. While the set R of real numbers (with the usual order) is a lattice, it is not
a complete lattice. However, the extended reals R = R[ f�1;+1g with
�1 < x < +1 for all x 2 R and the natural order within R constitute a
complete lattice.

3. The power set P(X) of any set X is easily seen to be a complete lattice

under the order of set�inclusion. (Exercise: Prove this by �nding the

appropriate Sup and Inf .)

4. (See Example 3.1.31) N with the order of divisibility is a complete lattice.
Again, as an exercise, �nd Sup and Inf appropriate for any subset.

In spite of being de�ned in terms of order exclusively, completeness is pre-

served by lattice isomorphisms, thus it is a property of algebras in the sense

that preserving the algebraic structure of a lattice ensures the preservance of

completeness as well.

The task of recognizing complete lattices is cut in half by the following result.

Proposition 3.2.3 For an order L =hL;�i, thwe following are equivalent:

(i) L is a complete lattice;

(ii) for any subset S � L, Inf�S exists in L;

(iii) for any subset S � L, Sup�S exists in L.
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Proof. Clearly, any complete lattice satis�es (ii) and (iii). Conversely, an

ordered set satisfying (ii) and (iii) is clearly a complete lattice.

Now assume (ii) and take any S � L. Let U :=fu 2 L ; u � s for all s 2 Sg.
Then Inf U = Sup S in L, so the arbitrary subset S has a supremum in L and

therefore L satis�es (iii). Hence (ii) implies (iii), hence by the above observation
(ii) implies (i).

The dual argument works to show that (iii) implies (i).

Complete lattices arise in many important situations as special collections

of subsets of some base set X. This fact motivates the following de�nition.

De�nition 3.2.4 A collection C � P(X) of subsets of a set X is a closure
system (on X) i¤

T
S 2 C for any subcollection S � C.

Note that X 2 C for any closure system C on X since X coincides with the

set intersection of the empty subcollection of C. As an immediate consequence of
Proposition 3.2.3, every closure system C is a complete lattice under set inclusion
as order relation. The in�mum in hC;�i coincides with set�intersection, but the
supremum is generally di¤erent from set�union, e.g. Sup fC1; C2g in C is given
by
T
fC 2 C ; C1 [ C2 � Cg which may properly contain C1 [ C2 as a subset.

Examples of closure systems can be found throughout the whole �eld of

mathematics, e.g. wherever we consider sub�constructs (sub�groups, sub�rings,

closed sub�spaces, linear sub�spaces, sub�algebras etc.) under the aspect of

�nding the smallest sub�construct which contains a given subset of the whole.

The next de�nition provides an alternative way to describe closure systems.

De�nition 3.2.5 Let X be any set. A map C : P(X) �! P(X) is a closure
operator on X i¤ for any U; V � X we have

(i) U � C(U) (C is extensive),

(ii) C(C(U)) = C(U) (C is idempotent) and

(iii) U � V implies C(U) � C(V ) (C is monotonic).

spanX, the linear sub�space spanned (generated) by some subset X of some

vector space V could serve as a natural example.

While closure systems emphasize the static aspect (closure systems consid-

ered as the collection of the �nal states of some process), closure operators are

the dynamical counterpart (the process itself). As we shall see, they present

di¤erent sides of the same coin:

Given a closure system C on X, de�ne the function CC : P(X) �! P(X) by

CC(U) :=
\
fA 2 C ; U � Ag
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for any U � X. Conversely, given a closure operator C, de�ne

CC :=fA � X ; A = C(A)g :

It is not di¢ cult to show that CC is a closure operator and that CC is a closure
system; moreover

CCC = C and CCC = C:

(Exercise: Work out detailed proofs for these statements!).

Although complete lattices from the point of view of their de�nition do not

di¤er much from lattices, the omission of the �niteness�condition for subsets

for which suprema and in�ma are to exist is a fundamental di¤erence from the

point of view of �rst�order logic. There is no set � of L�sentences � for an

appropriate language L � such that an L�structure is a complete lattice if and
only if it is a model of �. However, for the moment we are not in the position

to prove this, since we would use semantical arguments not yet introduced. The

complete proof will be given in Proposition 11.4.3.



Chapter 4

First Steps in Model
Theory

In this chapter, we provide a overview of the basic concepts you are bound to

come across when studying Model Theory.

4.1 Introducing Mod and Th

This section is intended to provide some introductory remarks and de�nitions

that will be central in any aspect of Model Theory as it will be presented in the

following chapters.

The starting point of model theory, if there is any, is best located in the

vicinity of the two operators Mod and Th. Since model theory basically con-

cerns algebraic properties common to classes of models of formal theories, the

transition from syntax to semantics has to be a �xed and smooth one. The

notion of satisfaction or validity in a model is too detailed and clumsy for such

a purpose. There must be ways of describing satisfaction in the context of

whole sets of sentences and classes of models. This leads to the de�nition of the

two class�operators Mod and Th. Let us begin by �xing some nomenclature

intended to make our lives a lot easier.

De�nition 4.1.1 For a formal language L, de�ne the class StrL by

StrL := fA;A is an L-structureg :

Note that StrL is a proper class1 and may be regarded as the semantical
1Thus generally, StrL is not a set. This exempli�es a phenomenon occurring throughout

mathematics, when dealing with the structure of sets is the focus of concern and not the

33
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counterpart to Sen L.
Working with sets of sentences and classes of models, questions such as the

following arise:

� Does a given set of sentences describe a class of structures that shows nice
semantical / categorical properties?

� Does a given class of models have a nice description in a language of
�rst�order logic?

Thus, what we are looking for are semantical / syntactical counterparts of

notions de�ned strictly in the syntactical / semantical realm respectively. We

are therefore in need of some means to interconnect the two realms of syntax

and semantics, a task that is now ful�lled using the two operators Mod and Th.

Note that the following de�nition consists of mutually dual parts:

De�nition 4.1.2 Let K � StrL (a subclass!) and � � SenL.

(i) Th(K) :=f� 2 SenL ; A j= � for every A 2 Kg (�theory of K�)

(ii) Mod(�) :=fA 2 StrL ; A j= � for every � 2 �g (�model class of ��)

Thus, Th assigns to a class K the set of sentences valid in all structures in

K, while Mod assigns to a set of sentences the class of structures in which all
the sentences in � are valid. We note that:2

Th : P(StrL) ! P(SenL)
Mod : P(SenL) ! P(StrL)

SenL StrL

syntax semantics

#

"

 

!��
����
�� #

"

 

!��
����
��

ThK K
� Th

� Mod�-
Mod

To keep notation legible and bracketing reasonable we simply write ThK
and Mod� instead of the more accurate Th(K) and Mod(�).

Exercise 4.1.3 Prove the following equivalences:

A 2 Mod� i¤ A j= �
� 2 ThfAg i¤ A j= �

elements of the sets. The lack of information on the side of the elements allows in principle
to construct the class of all sets as a derivative of the class of all L�structure, thus the latter
being a set would imply an antinomy along the line of Russell�s Paradox ; see also Section ??.

2NB: (Th;Mod) is what algebraists call a Galois�connection .
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There are several simpli�cations you are bound to come across in the context

of Mod and Th: First, brackets and the symbol � for the operational product
are often dropped. Thus, for � � SenL, � 2 SenL, K � StrL and A 2 StrL,
we regard expressions like

ThModK; ThMod�; ModThK; ModThA

as equally meaningful as their clumsy, full�blown equivalents

Th �Mod(K); Th �Mod(f�g); Mod �Th(K); Mod �Th(fAg);

although the latter notations are the more exact. Since unique reading is ensured

with the shortened and more readable forms, we will stick to these in further

developments.

Lemma 4.1.4 For � � SenL and K � StrL,

(i) � � ThMod� and K � ModThK.

(ii) Mod and Th are antimonotonic, i.e.
If �1 � �2; then Mod�1 � Mod�2:
If K1 � K2; then ThK1 � ThK2:

(iii) ThModThK = ThK and ModThMod� = Mod�.

Proof.

(i) � 2 � implies A j= � for every A 2 Mod�, thus � 2 ThMod�. Similarly
for K.

(ii) A 2 Mod�2 implies A j= �2, thus, since �1 � �2, we have A j= �1, i.e.
A 2 Mod�1. Similarly for K1;K2.

(iii) K � ModThK by (i). Thus ThK � ThModThK, using (ii). On the
other hand, using (i) we have ThModThK � ThK. Putting it all to-
gether, we have ThModThK = ThK. Similarly for the second claim.

Exercise 4.1.5 Bridge the gaps in the proof to Lemma 4.1.4.

Lemma 4.1.4 implies that both ModTh and ThMod are closure operators

(cf. De�nition 3.2.5). (To �nd a proof for this makes another exercise.) As

always in the context of closure operators, the �closed entities� deserve some

special attention:
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De�nition 4.1.6 Let � � SenL and K � StrL. We call

(i) � a theory i¤ � = ThMod�.

(ii) K a elementary class i¤ K = ModThK.

The use of �elementary�instead of �elementary class�is common practice.

Considering the products ThMod and ModTh as operators on SenL and
StrL respectively, we see that theories and elementary classes are the respective
�xed points of these operators.

Exercise 4.1.7 What about ; and StrL? Are those elementary classes? And
what about ; and SenL as sets of L�sentences? Are they theories?

To subsequently motivate these de�nitions, we observe that being a theory

means being exactly the set of sentences that hold in all structures of some

appropriate class of L�structures, while being elementary is equivalent to being
the class of all models of some set of sentences:

Corollary 4.1.8 For � � SenL and K � StrL,
(i) � is a theory i¤ � = ThK for some K � StrL.
(ii) K is elementary i¤ K = Mod� for some � � SenL.

Exercise 4.1.9 Prove corollary 4.1.8.

Some authors use the word axiomatizable instead of elementary to em-
phasize the fact that, for an elementary class K, there is a set � of sentences
axiomatizing exactly this class K. The elements of � are called axioms, not
to be confused with the axioms of �rst�order logic upon which our notion of

formal deduction is based.

Clearly, elementary classes are a widespread phenomenon and the reader will

have come across a few examples, maybe even without being aware of it, e.g.

the class of all sets, the class of all groups, rings, �elds etc. By providing the

respective axioms we implicitely prove (or are being told) that these classes are

indeed elementary. (Exercise: What would be axioms appropriate for the class

of all set?)

The task of providing a set of axioms for some given class is, from the

point of view of Model Theory, secondary to the task of �nding means of char-

acterizing classes as being or failing to be elementary without falling back to

syntactic notions. Thus we will, in later sections, successfully hunt for alge-

braic notions to tell elementary classes from the ones which are not. Since we

are mainly dealing with model�theoretic aspects, we therefore prefer the termi-

nology �elementary�to �axiomatizable�. Nevertheless, calling non�elementary
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classes non�axiomatizable puts the focus on the fact that such classes evade

description by the means of �rst�order logic.

For the time being, given L�structures A and B, the only way to �nd dis-
tinguishing properties of these two structures is via the formal language L, i.e.
some formulae that are satis�ed in only one of the two structures. If, by means

of the language, the two structures cannot be told from each other, we will say

that they are elementary equivalent:

De�nition 4.1.10 L�structures A and B are called elementary equivalent
i¤ ThA = ThB; notation A � B.

The situation compares to other �elds of math, e.g. algebra where catego-

rizing groups is only of interest up to the level of isomorphisms, i.e. isomor-

phic groups are regarded as identical. In the context of �rst�order logic, the

resolution is as grainy as the notion of elementary equivalence, so elementary

equivalent structures are one and the same where satisfaction of formulae is

concerned, since they satisfy the same L�sentences.
The following observation is almost too obvious to mention:

Lemma 4.1.11 If A;B 2 StrL, then

A � B i¤ [A j= ' i¤ B j= ' for all ' 2 SenL]:

The proof is left as an exercise.

Elementary equivalence is �language depending�, as is exempli�ed by the

fact that Q and R are elementary equivalent as ordered sets, but not as �elds.
(A proof for this is yet beyond our facilities; the necessary tools will be provided

below.) Still there is no risk of confusion since, whenever necessary, we will

always make clear which language is considered

The operators Mod and Th are mutually dual �interfaces�between syntax

and semantics. Notions de�ned for one realm are �translated�via these opera-

tors to the other realm. E.g. elementary equivalence is clearly rooted in syntax,

and we may wonder in what form it is expressed using semantic notions. We

will come back to this in Section 8.3.

For a class of L�structures being an elementary class means being axiom-
atizable, i.e. being de�nable by a set of L�formulae. Since looking for an
appropriate set of formulae may take forever, we start looking for other criteria

to decide whether we need not even start the search in the �rst place. Thereby

we try to stay in the semantical realm rather than using syntax. This will be

the subject of Chapters 7 and 8.

The following is obvious:
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Lemma 4.1.12 Every elementary classK is closed under elementary equiv-
alence, i.e.

If A 2 K and B � A; then B 2 K:

We leave the proof as an easy exercise to get used to dealing with the notions

involved.

Note that the converse of Lemma 4.1.12 is not true, as we shall later see

examples of classes of L�structures that are not elementary, but are still closed
under �(cf. Examples 8.1.7 and 8.1.9) .

4.2 Expanding and Restricting Languages

Expanding languages is a rather simple concept that poses no real problems

of understanding, yet it is of importance to model theoretic constructions. In

principle, we could expand a language L to another language L by adding new
relation�, function�or constant�symbols (or some of all, for that). So (we will

not elaborate a detailed de�nition here since we are lacking a precise de�nition

of a formal language to begin with) we will say that L expands L if L contains
all non�logical symbols of L (plus some more, eventually). Consequently, L is
called a sub�language of L.
In practice, the only kind of expansion of a language we will regularly use is

expansion by constants. Thus an expansion L of L and L itself will comprise the
same relation�and function�symbols, but L contains constant symbols that are
not present in L. Since our main usage of languages is to formalize structures,
you could say that an expansion by constant�symbols provides the larger vocab-

ulary by having names for elements that were �nameless�in the sub�language.

Expansion of a language carries over to most of the syntactical concepts

in the following sense: Suppose L expands L. Some tedious but instructing
experiences in Noetherian Induction show that

� TmL � TmL

� FmlL � FmlL

� SenL � SenL

Clearly, any L�structure A can be made to a L�structure, simply by �for-
getting�about the interpretations of the non�logical symbols added when form-

ing the expansion L. Almost with the same directness we may �expand�any
L�structure to a L�structure, this time by simply adding the missing interpre-
tations by arbitrary de�nitions.



4.2. EXPANDING AND RESTRICTING LANGUAGES 39

Example 4.2.1 If L0 is the language of groups consisting of a binary function�
symbol + and a constant�symbol 0, and L1 is language of rings (and �elds) con-
sisting of two binary function�symbol + and � and two constant�symbols 0 and
1, then L1 is an expansion of L0. Every L1�structure A is also a L0�structure,
as is exempli�ed by any ring hR;+; �; 0; 1i carrying also the structure of a group
hR;+; 0i, the �group�aspect�resulting from simply forgetting about the inter-

pretations � and 1 of the second function�and constant�symbol, respectively.
Conversely, any group (i.e. any L0�structure) can be expanded to a structure

for the expanded language L1 by �making up�arbitrary interpretations for the
new non�logical symbols � and 1. Nobody expects such arbitrary interpretations
to de�ne a ring, but they do expand the group to a L1�structure.

Arbitrary adaptations of course are not the real source of inspiration for the

notion of expansion, quite on the contrary, the constructions you are most likely

to encounter while dwelling the realms of model theory stem from the syntactical

approach of adding constant�symbols for all elements of some structure:

De�nition 4.2.2 Let L be a formal language.

1. If C is a set of constant�symbols not already in L, then LC will denote
the expansion of L resulting from adding the constant�symbols c 2 C to

L.

2. If X is any set, then LX will denote the expansion of L resulting from
adding, for every element x 2 X, a new constant�symbol cx to L.

3. If A is a L�structure, then LA := LjAj.

For 3, the L�structure A implicitly carries the natural interpretation which

makes it into a LA�structure A by de�ning simply cAa := a for any a 2 jAj. To
symbolize this, we will use the notation A := hA; caia2jAj.
We add to our list of consequences of expansions

� ThA � ThA

Taking one step back, one might recall a remark we made concerning term�

structures in the absence of constant�symbols, and one might even start to

wonder what CT(LA)=ThA looks like ...

The title of this section not only mentions expansion but also restriction of

languages, the latter of which we still owe you any word about.

Let�s look at a set � of L�sentences for some language L. If L is in�nite in
the sense that L has in�nitely many non�logical symbols, while � is �nite, we
may with all the right in the world say that most symbols in the language are a
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waste of time, they will never be used while we deal with �. So we might just

as well, instead of carrying the full weight of L, restrict our attention to the
relevant part of L, i.e. the symbols actually occurring in �. We thus de�ne

De�nition 4.2.3 If L is a formal language, ' 2 FmlL and � � FmlL, we
denote by L(') the sub�language of L which comprises exactly the constant�,
relation�and function�symbols occurring in ', and consequently by L(�) the
sub�language of L consisting exactly of the non�logical�symbols occurring in
some formula in �.

Par abus de language we could write L(�) =
S
'2� L('), implying the union

is �intelligent�in that it joins not the mere languages but their sets of constant�,

relation�and function�symbols, respectively.

It is noteworthy that, by syntactical considerations, we can prove that if

� ` ' with ' 62 L(�), then ` '. The prove of this uses induction on the length
of the deduction of ' from � and is a nice exercise to refresh the technical skills

for syntax matters.

Also, note that we did not discard L in the de�nition of L(') entirely for the
sole reason of ontological soundness, i.e. we need our formula to be a formula

built from symbols that come from some collection accessible to us, and this

collection we call L. But the more natural way is, of course, to just have a
look at a formula and collect the non�logical symbols, counting on our instinct

for math to be able to tell function�from relation�from constant�symbols and

these again from logical connectives. Mostly you will not come upon �language�

declarations�before doing some math.

4.3 Size Does Matter

In this section, we are going to take a closer look at a construction used mostly to

prove the correctness theorem of �rst�order logic. Put in �everyday�s math lan-

guage�, proves for Gödels correctness theorem mostly encapsulate the construc-

tion of some model built from syntactical notions, the so�called term�structure,

by taking the set of variable�free terms of the given formal language L and di-
viding this set into equivalence classes under the congruence relation of �being

provably equal�. The main problem encountered when doing so is to ensure

that there really are any variable�free terms, and that there are enough of them

to provide examples for any existential sentence formally deducible.

Maybe you recall, from predicate�calculus, that every consistent set of L�
formulae may be extended to a set of L0�formulae which is maximal�consistent
and has witnesses. Just in case you do not and for the sake of completeness, we
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sketch the process of providing such an expansion of L and the set of formulae,
and moreover outline the construction of the resulting term�structure in the

expanded language.

But since we do not want to bother to give a lecture on notions introduced

somewhere else in much more accuracy and with better the motivational frame-

work, we rather try to slightly generalize the result and bend the main focus

towards the goals of model theory.

Since the Löwenheim�Skolem theorems introduced in the next sections will

deal with the existence of models with universes of desired cardinalities, we �rst

have a look at how the cardinality of a language translates to the cardinalities

of certain sets of syntactical constructs:

De�nition 4.3.1 For a formal language L, we let cardL denote the cardinality
of the set of non�logical symbols of L, i.e. the cardinality of the (disjoint) union
of the sets of function�, relation�and constant �symbols of L. Especially, we
say that L is �nite (in�nite) if cardL is �nite (in�nite), and similarly for L
being (un)countable.3

For any set X, let X� denote the set of all �nite families of elements of (or

strings over X).

Lemma 4.3.2 For any in�nite cardinal �, cardX � � i¤ cardX� � �. More-

over, if X is in�nite, then cardX� = cardX.

Proof. (Using Set Theory:) If � is an in�nite cardinal, then the following holds:

� �n = � for all n 2 N;

� 
 � � = � for all 
 � �.

Now, if cardX � �, then

card(X�) =
X
n2N

card(Xn)

=
X
n2N

cardX = @0 � cardX

� @0 � � = �:

Also, since cardX� � cardX, the other direction follows easily.

Lemma 4.3.3 Let L be a formal language. Then
3The notion of countability will � in the course of this paper � be used to stand for

countable or �nite. So, unlike some other authors in the area of logic or Set Theory, for a
set to be countable there has to exist an injective mapping from the set to N which does not
necessarily have to be surjective!
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1. cardTmL � cardFmlL = card SenL;

2. If L is countable, then so are TmL, FmlL and SenL;

3. if cardL is in�nite, then cardTmL � cardL = cardFmlL;

4. for any set X, if cardL � cardX, then cardTmLX = cardFmlL =

cardX.

Proof.

1. This is an easy exercise: �nd 1�1�functions from TmL into FmlL, from
FmlL into SenL and from SenL into FmlL.

2. Since every variable is a term, TmL is in�nite.

Next we like to introduce the construction by Skolem mentioned in this

section�s title. The main idea behind these Skolem�functions is that pure exis-

tential sentences must be veri�ed by an example already in the set of sentences

under consideration, thus ensuring that we are equipped with enough constant

�symbols to construct the desired syntactical models.

First we need some auxiliary syntactical notions:

De�nition 4.3.4 A L�formula ' is called a property(�formula) if ' has at
most one free variable. The set of all L�properties will be denoted by PropL.
If ' is a property formula with free variable x, then we de�ne, for any L�

structure A, the extension of ' in A, denoted by j'jA, by

j'jA :=fa 2 jAj ; A j= '[h
�
x
a

�
] for any valuation h into Ag :

So the extension of a property is simply the set of all elements which �have

this property�. Note that for properties not having any free variables, the

extension in a structure is either empty or the whole universe.

De�nition 4.3.5 A set of sentences � � FmlL is said to have witnesses if
for every property ' 2 PropL, there is a constant�symbol c in L such that

9x'! ' (x=c) 2 �.

Lemma 4.3.6 Let �0 � �1 � �2 � : : : be a in�nite ascending chain of de-

ductively closed, consistent sets of L�sentences. Then
S
n2N �n is deductively

closed and consistent.
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Proof. If �0 :=
S
n2N �n were inconsistent, then (by compactness) we would

�nd an inconsistent �nite subset f'1; : : : ; 'ng� �0 and thus �i1 ; : : : ;�in with

f'1; : : : ; 'ng� �i1 [ : : : [ �in . But then �i1 [ : : : [ �in = �m would be incon-

sistent for some m, contradicting the assumptions.

�0 is deductively closed since, again by compactness, if �0 ` ', then there
is again a �nite subset f'1; : : : ; 'ng with f'1; : : : ; 'ng` ', so again we �nd

�m ` ' for some m, but then, since �m is deductively closed, ' 2 �m � �0.

Lemma 4.3.7 If � � SenL, then

�0 := �[ f9x'! ' (x=c') ; ' 2 PropLg

is consistent.

Proof. This is proved in most Textbooks dealing with the proof of completeness
of �rst�order logic via Henkin�style structures. To get the idea, please consult

the literature.

Most of the proof of the following theorem has been done in ..., but for the

sake of self�completeness and the cardinality�related observation in part (iv),

we are going to give a proof, omitting certain tedious details.

Theorem 4.3.8 If L is a formal language and � � SenL is consistent, then
there is an extension L0 of L and a set �0 of L0�sentences such that

(i) � � �0;

(ii) �0 has witnesses;

(iii) �0 is consistent and deductively closed;

(iv) cardL0 = maxf@0; cardLg:

Proof. De�ne, for n 2 N, formal languages Ln expanding L and �n � SenLn
as follows: Set L0 := L and �0 := �. Now suppose we are given Li and �i.
Then we set

Li+1 := hL; c'i'2PropLi

and

�i+1 := Ded(�i[ f9x'! ' (x=c') ; ' 2 PropLig);

where it is understood that the new constants c' are pairwise distinct. Finally,

we set L0 :=
S
n2N Ln and �0 :=

S
n2N �n.

Then clearly (i) holds. As for (ii), if ' 2 PropL0, then ' 2 PropLi for some
i 2 N, and thus 9x'! ' (x=c') 2 �i+1 � �0. (iii) follows directly from Lemma
4.3.6.
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To show (iv), we �rst note that if L is countable, then FmlL is countable
and so all the expansions Li of L are countable. But then L0 is the countable
union of countable sets and thus, by Set Theory, L0 is countable. On the other
hand, if cardL > @0, then cardLi = cardL for all expansions Li of L, and again
set theories tells us that cardL0 = cardL.

Theorem 4.3.9 If L is any formal language and � � SenL is consistent, then
there is a model A of � with card jAj � maxf@0; cardLg.

Proof. Let L be a formal language and � � SenL consistent. By 4.3.8, we
�nd a language L0 � L and a consistent theory �0 � SenL0 such that L0 has
witnesses. Moreover, since �0 is consistent, we have Mod�0 6= ; and thus, for
some A 2 Mod�0, �0 � ThA. So w.l.o.g we assume that �0 is complete (and
hence maximal consistent).

Now, by correctness, CT(L)0 =�0 is a model of �0, and

card j
0

CT(L) =�0j � cardTmL0 = cardL0:

So we see that, unless we�re dealing with a very rich language with lots of

names and symbols for functions and relations, we may �nd models for consistent

sets of sentences that are rather small:

Corollary 4.3.10 If L is �nite or countable, then every consistent set of L�
sentences has a countable (�nite or in�nite) model.

So we see that there are countable models of the theory of the complex or

real numbers considered as �elds. What�s more of a surprise, the above corollary

implies the existence of a countable model of ZFC Set Theory, a theory dealing

with cardinals as mind-bogglingly uncountable as @@@0@0 , thus such a countable

model must have an element having exactly the same �rst�order properties

provable for @@@0@0 in ZFC!

Nevertheless, you might be left with the feeling of a somewhat empty stom-

ach, since what we did is to build a model made up from purely syntactical con-

structs. So our knowledge about this model is not deeper than our knowledge

of the syntax of �rst�order logic, and there we have to live with the boundaries

set by incompleteness/undecidability. What would (even if only mentally) more

reassuring is the construction of a smaller model, given a structure which is, in

the light of the above results, �tted with a universe full of redundant entities.

By reducing this model to its necessary small part, we could probably have a

better grasp of its properties by using (non��rst�order) results known about
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the bigger structure. This is exactly what the Downward Löwenheim�Skolem

Theorem is all about, and we will deal with it right now.

4.4 Meet the Morphisms!

When considering classes of mathematical constructs sharing some general struc-

tural common ground, it is common mathematical practice to have a closer look

at mappings between them preserving these properties. These mappings are

often4 called (homo�)morphisms. We are now looking at such mappings in the

context of model�theory, which means the properties to be preserved are given

by �rst�order logic, i.e. the interpretations of the symbols:

De�nition 4.4.1 Let A, B be L�structures. A map � : jAj �! jBj is a L�
homomorphism from A into B i¤

� for all relation�symbols Ri and all a1; : : : ; a�(i) 2 jAj,

ha1; : : : ; a�(i)i2 RAi implies h�(a1); : : : ; �(a�(i))i2 RBi ;

� for all function�symbols fj and all a1; : : : ; a�(j) 2 jAj,

�(fAj (a1; : : : ; a�(j)) = fBj (�(a1); : : : ; �(a�(j)));

� for all constant�symbols ck,

�(cAk ) = cBk :

A is called the source (or domain) and B the target (or co�domain) of �.
If � is surjective, B is called a homomorphic image of A. We write homAB
for the set of all homomorphisms from A into B.

To simplify the notation, we introduce the following abbreviation: If X, Y

and S are sets and � : X �! Y , then the function �S : XS �! Y S is de�ned

by

�(S)(hxs ; s 2 Si) :=h�(xs) ; s 2 Si :

Especially, if n 2 N,

�(n)(x1; : : : ; xn) :=h�(x1); : : : ; �(xn)i;
4At least this is true if algebraic structures are involved. Of course continuous functions

fall in this category also, as do order�preserving functions.
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where the notation

� � � � : : :� �| {z }
n factors

for �(n)

is equally popular.

As simple examples we see, for any L�structure A, that the identity�map
idA de�ned by idA(a) = a for all a 2 jAj, is a homomorphism. Moreover,
it is easy to see that the composition � � � of two homomorphism is again a

homomorphism. Another example involves the notion of the direct product of

structures, since then we see that the projections are homomorphisms as well.

(This will become clear when products will actually be needed.)

Homomorphic behavior of a map, as de�ned on functions and constants,

translates to terms in general:

Lemma 4.4.2 IfA;B are L�structures and � : A �! B is a L�homomorphism,
then for any L�term t and any valuation h into A,

�(tA[h]) = tB[� � h]:

A B

fv0; v2; v2; : : :g











�

J
J
J
J
JĴ-

h � � h

�

Proof. By induction on t.

� If t � x is a variable, then

�(tA[h]) = �(h(x))

= � � h(x) = tB[� � h]:

� If t � ck is a constant�symbol, then

�(tA[h]) = �(cAk )

= cBk = tB[� � h]

since valuations are negligible for constant�symbols.
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� If t � fj(t1; : : : ; t�(j)) for terms t1; : : : ; t�(j), then

�(tA[h]) = �(fAj (t
A
1 [h]; : : : ; t

A
�(j)[h]))

= fBj (�(t
A
1 [h]); : : : ; �(t

A
�(j)[h]))

= fBj (t
B
1 [� � h]; : : : ; tB�(j)[� � h]) (by ind. hyp.)

= tB[� � h]:

Characterizing the homomorphisms according to their universal behavior

is the next step we take. For example, looking at groups, we call the injec-

tive homomorphisms monomorphisms and surjective homomorphisms epimor-

phisms. Now being injective or surjective is not exactly a universal property,

since it can be veri�ed in a rather local setting involving but the domain and

the co�domain of the homomorphism. But there are indeed more general ways

of expressing the central ideas:

De�nition 4.4.3 LetA and B be L�structures and � : A �! B a L�homomorphism.

1. � is called a L�monomorphism (ormono) if, for any L�structure C and
any �1; �2 : C �! A,

� � �1 = � � �2 implies �1 = �2:

C A B
-- -
�1

�2

�

2. � is called a L�epimorphism (or epi) if, for any L�structure C and any
�1; �2 : B �! C,

�1 � � = �2 � � implies �1 = �2:

A B C- --
� �1

�2

3. � is called a L�isomorphism (or iso) if there is a � : B �! A such that

� � � = idA and � � � = idB :

A B
�-
��1

�
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4. � is called a (isomorphic) L�embedding if � is an isomorphism onto a

substructure of B.

A and B are called isomorphic, notationA �= B, if there is a L�isomorphism
� : A �! B. A is called (isomorphically) embeddable into B if there is an
embedding � : A �! B.

There might be some confusion arising since in classical algebra, e.g. group�

monomorphisms are de�ned to be injective homomorphisms. Since we are in-

clined to take a somewhat more universal attitude, we used the universal (or

categorical) properties as de�ning statements. So for the present lecture, we

distinguish between mono and 1�1, between epi and surjective. Of course there

are connections:

Remark 4.4.4 1. injective homomorphisms are monos,

2. surjective homomorphisms are epis,

3. isos are injective and surjective.

But be aware of the fact that for a map to be an L�isomorphism, it needs
more than just being injective and surjective. As an exercise, study the (simple)

setting for L being the language having � as only non�logical symbol, and con-
sider the two L�structures A := hf(0; 1); (1; 0)g;�i and B := hf(0; 0); (1; 1)g;�i,
where in both cases � is the point�wise ordering. It will present no real di¢ -

culty to �nd a L�homomorphism that is both injective and surjective, but still

A and B are not isomorphic.
The following provides simple paraphrasing of the conditions for a map to

be an isomorphism:

Lemma 4.4.5 For a homomorphism � : A �! B, the following are equivalent:

(i) � is a L�isomorphism;

(ii) � is injective and surjective and ��1 is a L�homomorphism;

(iii) � is injective and surjective and

RAi (a1; : : : ; a�(i)) i¤ R
B
i (�(a1); : : : ; �(a�(i)))

for all relation�symbols Ri of L and all a1; : : : ; a�(i) 2 jAj.

Proof. Exercise.
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In later chapters we will be concerned with algebras, which are roughly

speaking structures without relations. It is not hard to see that in this setting,

isos correspond exactly to bijective homomorphisms.

Isomorphic structures can be converted one into the other by a �renaming�of

their elements, provided by the isomorphism considered. For any isomorphism

� : A �! B the inverse map ��1 is an isomorphism from B to A (Exercise:

Prove this).

Throughout mathematical �elds, �nding an isomorphism between two struc-

tures is a way of showing that within the theory at hand, we cannot distinguish

these two structures, they look exactly the same, which serves as a motivation

to drop the distinction between them and actually regarding them as one and

the same. This is what is often expressed by the idiom �unique up to isomor-

phism�, as in �up to isomorphism, there is exactly one group of 7 elements�.

The general setting we are concerned with is no di¤erent, only are we not con-

tent with having found a 1�1 and onto homomorphism as e.g. group theorists

have the advantage of, we must be a little more careful (while staying even more

universal).

Now that we know about isomorphisms, it�s time to look at some conse-

quences accompanying this notion. If isomorphic should have any prospect of

standing for �indistinguishable�, then surely �rst�order logic is not allowed to

tell isomorphic structures apart. In other words, isomorphisms should not only

preserve algebraic properties but �rst�order�properties as well. So clearly the

following makes a lot of sense:

Theorem 4.4.6 For any two L�structures A and B,

If A �= B; then A � B:

Proof. First, we note that for any valuation hA into A, � � hA is a valuation
into B and, conversely, for any valuation hB into B, there is a valuation hA into
A with hB = � � hA.
Next we realize that, by 4.4.2, for any L�term t and for any two valuations

hA into A and hB into B,

tB[� � hA] = �(tA[hA])

and

tA[��1 � hB] = ��1(tB[hB])

giving us a bijective correspondence on terms.
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Stepping over to L�formulae, we have to show that, for all ' 2 FmlL and
all valuations hA; hB into A, B respectively,

B j= '[� � hA] i¤ A j= '[hA]:

You will not be too surprised to hear that this can be done via structural

induction over '. So we have to consider the following cases:

� If ' � t1
:
= t2 for L�terms t1; t2, then for any valuation h into A we have

A j= '[h] i¤ tA1 [h] = tA2 [h]

i¤ �(tA1 [h]) = �(tA2 [h]) (� is 1�1 and onto)

i¤ tB1 [� � h] = tB2 [� � h] (by the above)

i¤ B j= '[� � h]:

� The case where ' � Ri(t1; : : : ; tn) is left as an exercise.

� If ' � :# for a L�formula #, then for any valuation h into A we have

A j= '[h] i¤ A 6j= #[h]

i¤ B 6j= #[� � h] (by ind. hyp.)

i¤ B j= '[� � h]:

� Again the case ' � # ^  is left as an exercise to the reader.

� If ' � 8x# for a variable x and a L�formula #, then for any valuation h
into A we have

A j= '[h] i¤ A j= #[h
�
x
a

�
] for all a 2 jAj

i¤ A j= #[h
�

x
��1(b)

�
] for all b 2 jBj

i¤ B j= #[� � (h
�

x
��1(b)

�
)] for all b 2 jBj

i¤ B j= #[(� � h)
�
x
b

�
] for all b 2 jBj

i¤ B j= '[� � h]:

To hope for the converse to hold as well is being over�optimistic and not jus-

ti�ed, as later examples will show. So in general, elementary equivalent struc-

tures need not be isomorphic; our �rst�order languages lack a mechanism to

express certain properties which are preserved by isomorphisms. If we carefully

study the de�nition of isomorphisms, we might even spot the crucial point where
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formal languages for �rst�order logic fail to provide the necessary constraints:

Since relation�, function�and constant�symbols are syntactical elements, ho-

momorphic behavior is implemented in �rst�order languages. So we only might

get in trouble where the existence of a unique inverse morphism is demanded, or

to regard it in a more local setting, with bijectivity. Still, if the structures under

consideration are �nite, there will be no problem, but with in�nite structures,

elementary equivalence will prove to be properly weaker than isomorphism.

For the rest of this section, we need an auxiliary notion which will help us to

capture L�isomorphisms for the �nite case using the �rst�order language L. For
any n 2 N we are going to de�ne a set of L�formulae as follows: ��n contains
exactly the following formulae

� vm1

:
= vm2

and :vm1

:
= vm2

for any m1;m2 2f1; : : : ; ng;

� ck
:
= vm and :ck

:
= vm for any m 2f1; : : : ; ng;

� fj(vm1 ; : : : ; vm�(j)
)
:
= vi and :fj(vm1 ; : : : ; vm�(j)

)
:
= vi

for any m1; : : : ;m�(j) 2f1; : : : ; ng;

� Ri(vm1 ; : : : ; vm�(i)
) and :Ri(vm1 ; : : : ; vm�(i)

)

for any m1; : : : ; i�(i) 2f1; : : : ; ng.

We note that (1) only the n variables v1; : : : ; vn are occurring in formulae in

��n and (2) ��n is �nite whenever L is �nite.
If A is a L�structure and h a valuation in A, then ��(A; h) is given by

��(A; h) :=f' 2 ��card jAj ; A j= '[h]g:

Lemma 4.4.7 Let A;B 2 StrL be �nite. A map � : A �! B is an isomor-
phism i¤ for any valuation h into A, ��(A; h) = ��(B; � � h).

Proof. Assume � : A �! B is an isomorphism and h is a valuation into A. So
card jAj = card jBj. So we only have to consider formulae in ��card jAj.
Also, for any structure C, any valuation h into C and any ' 2 ��card jCj which

is not a negation, we have :' 2 ��(C; h) i¤ ' =2 ��(C; h), so we can actually
restrict our attention to the non�negated formulae.

Let ' 2 ��(A; h).

� if ' � vm1

:
= vm2

, then we see that

' 2 ��(A; h) i¤ h(vm1) = h(vm2)

i¤ � � h(vm1
) = � � h(vm2

) since � is a bijection

i¤ ' 2 ��(B; � � h)
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� similar for the other cases.

For the other direction, we �rst note that ��(A; h) = ��(B; � � h) for any
h implies card jAj = card jBj. Now let h be a valuation into A which is 1�1

on fv1; : : : ; vcard jAjg. Then for � with ��(A; h) = ��(B; � � h), � is a bijection
since for a; b 2 jAj, a 6= b, we �nd vi; vj , i; j 2f1; : : : ; card jAjg with h(vi) = a,

h(vj) = b, so :vi
:
= vj 2 ��(A; h) and thus :vi

:
= vj 2 ��(B; � � h), i.e.

�(a) = �(h(vi)) 6= �(h(vj)) = �(b). Since a; b were arbitrary, � is 1�1 and thus

by �niteness a bijection. Moreover, for any constant�symbol ck, cAk = h(vi)

for some i 2f1; : : : ; card jAjg, so ck
:
= vi 2 ��(A; h) = ��(B; � � h), so cBk =

� � h(vi) = �(cAk ). Similar argumentations for function�and relation�symbols

show that � is an isomorphism.

Exercise 4.4.8 Write out the details of the above proof.

Lemma 4.4.9 If L is a �nite formal language5 and A is a �nite L�structure,
then there is a L�sentence 
A such that for any B 2 StrL,

B j= 
A i¤ A �= B:

Proof. Let h be a valuation into A which is 1�1 on fv1; : : : ; vcard jAjg. Since
the language is �nite, ��(A; h) is �nite, say ��(A; h) =f 1; : : : ;  kg. Let the
L�formula 'A be given by 'A :�  1 ^ : : : ^  k. Moreover, for n 2 N, let '�n
be the sentence expressing that there are at most n elements in the universe.

Now let card jAj = n. We claim that the desired L�sentence 
A is


A � '�n ^ 9v1 : : :9vn'A:

It�s easy to see that A j= 
A. Now assume A �= B. Then by Theorem 4.4.6,

A � B, and A j= 
A, so B j= 
A.

Conversely, if B j= 
A, then B has at most n elements and is thus �nite. Also
B j= 9v1 : : :9vn'A, so B j= 'A[h

0] for some valuation h0 into B. Let � : A �! B
satisfy �(h(vi)) := h0(vi) for all i 2f1; : : : ; card jAjg. (This uniquely de�nes �
since h is supposed to be 1�1 on fv1; : : : ; vng. Now let  2 ��n. If  2 ��(A; h),
then B j=  [� �h] by the choice of h0 and since h0 = � �h. On the other hand, if
 =2 ��(A; h), then (1) if  is not negated, : 2 ��Ah and thus B j= : [� � h],
i.e. B 6j=  [� � h], or (2) if  is negated, say  � #, the same argument holds

using# instead of : . So together we get, for any  2 ��n,

B j=  [� � h] i¤  2 ��(A; h):
5So L has only �nitely many non�logical symbols, cf. De�nition 4.3.1.
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Since B is �nite and has at most card jAj elements, ��(B; � � h) is a subset
of ��card jA, so we get ��(A; h) = ��(B; � � h). But by Lemma 4.4.7, � is an
isomorphism.

Proposition 4.4.10 If A and B are �nite L�structures, then

A �= B i¤ A � B:

Proof. Clearly we only have to show the right�to�left half (the other direction
is exactly 4.4.6). So assume A 6�= B. De�ne

E :=f� : A �! B ; � is bijectiveg :

Now none of the � 2 E is a isomorphism, so we �nd, for every � 2 E ,

a constant�symbol ck such that �(cAk ) 6= cBk

or a function�symbol fj and a1; : : : ; a�(j) 2 jAj with

�(fAj (a1; : : : ; a�(j))) 6= fBj (�(a1); : : : ; �(a�(j)))

or a relation�symbol Ri and a1; : : : ; a�(i) 2 jAj such that

not [RAi (a1; : : : ; a�(i)) i¤ R
B
i (�(a1); : : : ; �(a�(i)))]:

Let L1 be the sub�language of L containing only one such constant�, function�
or relation�symbol for every � 2 E . Then L1 is �nite. Clearly every L�
isomorphism would be a L1�isomorphism, so also in L1, A and B are not iso-
morphic. Applying Lemma
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Chapter 5

The Löwenheim�Skolem
Theorems

The main goal of this chapter is to demonstrate that there are limits to the

extent in which �rst�order theories in�uence the cardinality of their models.

We will be show that, roughly speaking, the number of non�logical symbols

of a language marks the lower boundary for the number of elements in the

models, and that for theories with in�nite models, there is no upper limit to the

cardinality of models.

5.1 Cardinality

The aim of this section is to explain the basic notion of the cardinality of a

set. It is not meant to be an introduction to the theory of cardinals, since we

are interested in an intuitive understanding of the concept of cardinality and

in its precise de�nition in the context of Set Theory (which is where cardinals

originated).

The Löwenheim�Skolem theorems deal with the size a model of a theory may

Figure 5.1: Leopold Löwenheim (1878�1957)

55
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Figure 5.2: Georg Cantor (1845�1918)

have. Therefore, we need a way to measure a model�s size and to compare it

with other models. A rather straightforward way to measure a collection�s size

is clearly to count the entities that belong to that collection. Then, we attach

the number we found by this counting as the collection�s measure. Even if we

do not want to deal with the (abstract) concept of numbers, we are still in a

position to compare collections with respect to the number of their elements by

making a one�to�one assignment of their elements: The larger collection will

always have some elements which cannot be assigned.

A B

Set Theory (which, as mentioned above, is not the focus of this section)

provides the notion of bijective mappings (cf. Section 1.2) which ful�ll the task

of such a one�to�one assignment. If there is a bijective mapping from some set

A onto a set B, then these sets are said to be equipotent , i.e. they have the

same number of elements, the same size.
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A B

A cardinal (number), then, is a representative for the equivalence class of all

sets having the same size, chosen in a canonical fashion. So cardinals are special

sets representing all the sets to which they are equipotent. If there is a bijection

between a set X and a cardinal �, then we say that X is of cardinality �, card =

�, alluding to the fact that two distinct cardinals may never be equipotent. In

fact, Set Theory proves that there is at most one � for a given set X such that

card = �. In Set Theoretic contexts where the Axiom of Choice is assumed,�at

most one ��can be replaced by �exactly one ��.

Exercise 5.1.1 Show that equipotency, as introduced above, is an equivalence
relation.

We now know how to �nd out if two sets have the same size; but there

needs to be also a way to compare sets with di¤erent cardinalities. Our intuitive

understanding of a bijective assignment as an abstract representation of counting

suggests the idea of injective mappings representing the assignment of a whole

set A onto a part of a set B (for which we not necessarily have to use the whole

of B). So there may be some elements left in B, therefore B must be at least

as big as A.

A B

We will agree on the fact that A is at most of the size of B, or A is at most as

big as B, if we �nd an injective mapping from A to B.
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Exercise 5.1.2 Turning the above reasoning upside down, what kind of map-
pings from B to A would in an equally plausible way constitute the fact that B

is at least of the size of A?

Exercise 5.1.3 Show that if A and B are equipotent, then both A is at least

of the size of B and B is at least of the size of A.

There are a few questions which usually turn up when students are �rst

confronted with this way of counting elements. First, you may wonder in what

this method di¤ers from everyday counting methods. Actually, it di¤ers not at

all, certainly not as long as we stay within certain limits regarding the nature

of the collections we are considering. The step from comparing collections to

assigning an abstract representative for the number of its elements can be found

both in the process of counting apples in a basket and in the measuring of the

cardinality of sets.

Cardinals are not arbitrary as sets, all to the contrary, they are required

to satisfy certain requirements we will not further elaborate here. But as a

consequence of the rather special form of cardinals, we have to make sure that

there are cardinal numbers any kind of sets, even for rather large sets such as

the set of natural or real numbers. As a matter of fact, in most mathematical

contexts, there is a �rm belief in the Axiom of Choice, and it is exactly this axiom

which � within the Set Theoretical foundations of Mathematics � provides us

with cardinals for any kind of set. Therefore, we will never have to worry to run

out of cardinals.

Another question might be whether we could ever run out of sets. In other

words: Is there an upper bound to the size of sets? The answer is clearly no,

and the reason lies in the (axiomatically given) fact that for any set A, the

power set P(A) of A (i.e. the collection of all of A�s subsets) is again a set.

Moreover, P(A) can be shown to be strictly larger than A, i.e. there is an

injection from A into P(A), but not vice versa, and clearly there is no bijection
between those two sets. The argument to show this involves a technique which

can be applied equally well to several other contexts and therefore has a name:

The Diagonal Argument . Its application to Set Theory goes back to Cantor and

can be summed up as follows: If we assume that there is a bijection � between A

and P(A), then we look at the subset D of A given by D :=fa 2 A ; a =2 �(a)g.
Since D is a subset of A, there must be some d 2 A with �(d) = D. But this

leads to a contradiction since then d 2 D if and only if d =2 D.

Exercise 5.1.4 How do we come to this contradiction?

Yet another question: Since we accept the existence of in�nite sets, how can

they be distinguished from �nite sets? The answer can be given in two ways,
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which in Set Theory must be distinguished because of their di¤erent axiomatic

foundations, but which for our purposes can be regarded as equivalent: A set

is in�nite if it is at least as large as the set of natural numbers. On the other

hand, a set is �nite if it is not in�nite. Alternatively, a set is (Dedekind�)

in�nite if there is a bijection onto one of its proper subsets. Consequently a set

is (Dedekind�) �nite if it is not (Dedekind�) in�nite.

The �nite cardinal numbers bear the same names as their respective natural

numbers. The in�nite cardinals, on the other hand, are designated by the

hebrew symbol @ (aleph) with the appropriate index: @0 is the �rst in�nite
cardinal, @1 the second, etc. Sets of cardinality @0 are called countable or
countably in�nite, a nomenclature which originates from the idea that those

sets are of the same cardinality as the set of natural numbers N and could

therefore be numbered or counted by the natural numbers. In�nite sets which

are not countable are, of course, uncountable. Just as there are di¤erent sizes

of �nite sets, there are di¤erent levels of in�nity.

Exercise 5.1.5 Which of the sets N, Z, Q, R, C, N2, P(N) are countable?

We are all quite used to do calculations with �nite sets, such as to build the

sum / di¤erence / product of their numbers of elements. To be more precise, we

are able to calculate the number of elements in constructs such as the set union

or direct product using elementary arithmetic on the numbers of elements in the

argument sets of the constructions. E.g. for �nite sets A and B, the number of

elements in the direct product A�B is the product of the number of elements

in A and the number of elements in B,

card(A�B) = (cardA � cardB);

or the number of elements in a union of sets A1; :::; An is at most the sum of

the numbers of elements in the Ai�s,

card(
n[
i=1

Ai) �
nX
i=1

(cardAi)

As for �nite sets, there is a way to do calculations with in�nite cardinals, but

some results are quite di¤erent from the ones for �nite sets. (The proofs of the

following statements can be found in any textbook on Set Theory.)

The sum of two cardinals is de�ned as the cardinality of the disjoint union of

two sets of the cardinality corresponding to the summand cardinals: The sum of

2 and 3 is 5 because the disjoint union of a two-element set and a three-element

set is a �ve-element set. Applying this (not too precise) de�nition to in�nite

cardinals, we may �nd that the disjoint union of two in�nite sets can always
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be mapped bijectively onto the larger of the two sets. Therefore, the sum of

two in�nite cardinals is always equal to the larger of the two cardinals.This may

be generalized to more than two (or even in�nitely many) argument sets: If

Xn (n 2 N) are countably many in�nite sets of cardinality � �, then
S
n2NXn

and
Q
n2NXn again have cardinality � �. These facts will be used in the next

section.

5.2 Cardinality and Languages

The Löwenheim-Skolem Theorems are statements about how the possible size

of a model of a theory in some language L depends on the number of non�logical
symbols in this language. To clarify this point, we introduce the notion of the

cardinality of a language and that of a model.

De�nition 5.2.1 For a formal language L, the cardinality of L, notation
k L k , is given by

k L k:= card(FmlL).

The motivation for this seemingly arbitrary de�nition will become clear once

the Löwenheim-Skolem Theorems are formulated and proven.

The de�nition of the cardinality of a model is slightly more straightforward.

De�nition 5.2.2 For a structure A 2 StrL, the cardinality of A, notation
cardA, is de�ned to be the cardinality of the universe of A:

cardA := card jAj:

Lemma 5.2.3 If L is a formal language given by index-sets I; J and K, then

k L k= maxfcard I; card J; cardK;@0g:

Proof. Because we lack the formal apparatus to give a precise proof, we will
not go into details here, but give an outline of the reasoning:

An L-formula ' is a �nite sequence of symbols, therefore there are at most as
many formulae as there are sequences of symbols. We de�ned a formal language

to have countably many variables v0; v1; ::: (that is why we have to explicitely

include @0 in the equation), so the cardinality of the set of terms is at least
@0. Since every constant symbol is a term, and, for every function symbol fj ,
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fj(v0; :::; v�(j)�1) is also a term, the cardinality of the set of terms is at least

� := card(J [K [ fvi; i 2 Ng) = maxfcard J; cardK;@0g:1

On the other hand, every term is a �nite sequence of variables, function sym-

bols and constant symbols (and some auxiliary symbols like brackets), hence

there are at most as many terms as there are sequences of this kind. But the

cardinality of the set of sequences of variables, constant or function symbols is

card
S
n2N((J [ K [ fvi; i 2 Ng)n). From the remarks at the end of the pre-

vious section, we know that this is again �. This proves that the set of terms

has cardinality maxfcard J; cardK;@0g. Similar arguments applied to the set
of L�formulae prove the claim of the lemma.

For the next result, the reader is kindly invited to recall the Completeness

Theorem for First Order Logic. One way to formulate this theorem is by the

following statement:

Theorem 5.2.4 Every consistent set of sentences has a model.

The Downward Löwenheim�Skolem Theorem may be seen as the following

sharpening of the statement of Theorem 5.2.4:

Theorem 5.2.5 (Extended Completeness Theorem) If � � SenL is con-
sistent, then there is a model A of � such that cardA � cardL.

Instead of proving the Extended Completeness Theorem 5.2.5 directly, we

are going to analyze the steps necessary to verify the Completeness Theorem

5.2.4 under the aspect of cardinality. Such a proof in most cases consists of the

following steps:

1. [Max] Show that every consistent set � of L-sentences can be expanded
to a maximally consistent set of sentences.

2. [Wit] Show that every consistent set � of L-sentences can be expanded
to a consistent set �0 of L0-sentences, where L0 extends L by adding new
constants such that every existential sentence has a witness.

3. [CTL0=�] The term-structure of L0 modulo � is a model for the original
consistent set � of L-sentences.

Let us now analyze these steps under the aspect of cardinality. Moreover,

let us assume that we start with a language L that has cardinality �.
1Without loss of generality, we assume the sets I; J;K and fvi; i 2 Ng to be pairwise

disjoint.
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1. Clearly, every (consistent or not) set � of L-sentences has a cardinality
at most � since a set of sentences is a subset of the set of formulae. The

same holds for a maximally consistent set of L-sentences. Therefore, in
step (Max), we do not exceed the cardinality � given by the language.

2. This step consists of an in�nite number of expansions Li (i 2 N) of the
language L. If Li is given, Li+1 is constructed by adding a new constant
symbol c9x' for every existential sentence 9x' 2 SenL, so

k Li+1 k= maxfcard I; card J; card(Ki [ fc9x';9x' 2 SenLig);@0g;

which by simple cardinal arithmetic is easily seen to be �. (The exact

nature of the sets �i+1 of Li+1-sentences is of no importance to our con-
siderations since these sets are clearly sets of formulae whose cardinality

is bounded by � as well. However, please note that the languages Li di¤er
only in their sets of constant symbols, and that FmlLi+1 � FmlLi.)

Finally, L0 is de�ned to be L expanded by the sets of new constant sym-
bols introduced in the constructions of the Li�s. From this, k L0 k can
easily be seen not to exceed � since it is de�ned to be the cardinality of a

union of countably many sets whose cardinality is �,

k L0 k= card(
[
i2N

k Li k) � card(@0 � �) = �:

From this we see that also the constructions in this step do not cross the

cardinality boundary set by L:

3. By de�nition, the term�structure CTL0=�0 has as universe the set CTL0

of closed terms of L0 modulo the equivalence relation ��0given by

t1 ��0 t2 i¤ �0 ` t1 _=t2;

i.e. an element of CTL0=�0 is an ��0�equivalence class.
Since t _=t 2 FmlL0 for every t 2 CTL0, we �nd that

card(CTL0) � card(FmlL0)

and because the assignment t 7! [t]��0de�nes a surjection from CTL0 onto
CTL0=�0,

card(CTL0=�0) � card(CTL0):
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Figure 5.3: Thoralf Albert Skolem (1887�1963)

We conclude

card(CTL0=�0) � card(CTL0) � card(FmlL0) = k L0 k= �:

In other words, the constructed model�s cardinality is at most �.

5.3 The Downward Löwenheim�Skolem Theo-

rem

Let us now combine and apply the results from the previous section.

Theorem 5.3.1 (Downward Löwenheim�Skolem Theorem)
If � � SenL has a model, then � has a model whose cardinality is at most

k L k.

Proof. This is nothing else than Theorem 5.2.5 which we just proved.

The following special case of Theorem 5.3.1 is merely of historical interest,

since it is thus that the Downward Löwenheim�Skolem Theorem was originally

formulated.

Corollary 5.3.2 If L is countable (�nite or in�nite), then � � SenL has a
model i¤ � has a countable model.

The proofs of the following direct consequences of the Downward Löwenheim�

Skolem Theorem 5.3.1 are left as exercises.

Corollary 5.3.3 If L is countable (�nite or in�nite), then � has a countable
model.

Corollary 5.3.4 If a sentence � 2 SenL has any model at all, then � also has
a countable model.
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Corollary 5.3.5 ifA 2StrL, then there is a B 2StrL with B � A and cardB �k
L k.

Corollary 5.3.6 A (consistent) theory which has only uncountable models can-
not be axiomatized by countably many axioms or in a countable language.

The following corollaries present more example�related results (the proofs

of which are omitted since they follow simply from having a closer look at

the respective languages): Remember that ZFC is the Set Theory of Zermelo�

Fränkel with the Axiom of Choice formulated in the (strikingly simple) language

consisting of nothing but the binary relation�symbol 2.

Corollary 5.3.7 If ZFC is consistent, then ZFC has a countable model.

Unfortunately, the premise cannot be omitted, since it is not known whether

ZFC is consistent or not. But still, since a whole generation of mathematicians

successfully develop their branch in the world based on Set Theoretic notions and

thus on ZFC, we may, at least for the moment, assume that ZFC is consistent

and later, if ever we should stumble over an inconsistency, try to �x the leak.

So, if we plant our beliefs in this ground, the above corollary states that there

is a countable model for ZFC; that is, there is a set (!) M equipped with a

binary relation ~2 which mirrors the whole universe of sets, with the �element
of��relation 2 modelled by the binary relation ~2. As elements of this set, we
�nd all ordinals, cardinals, sets we can prove to exist according to ZFC and

the like. Among other, we may therefore even �nd M itself inside this model

M. But this would imply that M cannot possibly be a set in the sense of

ZFC. This seeming paradoxon is resolved with the realization that, e.g., being

uncountable in the modelM is not the same as being uncountable in the universe

of sets; alternatively, if you prefer a less platonistic point of view, the meaning

of being uncountable depends on the context � or model � this expression is

interpreted in. For more on this subject, we refer the reader to any of the books

on (axiomatic) Set Theory mentioned in the bibliography.

Corollary 5.3.8 There exists a countable algebraically closed �eld (as a sub�
ring of C).

Corollary 5.3.9 There exists a countable in�nite Boolean algebra.

The �rst of these results confronts us with the fact that, algebraically speak-

ing, the �eld of complex numbers is far too big for the purpose of solving any

given equation. It is also noteworthy that the witnesses added in the iterative

process of extending a given subset are solutions of equations, and the witness�

extentions are algebraic extensions.
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Figure 5.4: Alfred Tarski (1902�1983)

For the second example, the astonishing fact is that we easily �nd examples

of �nite or uncountable boolean algebras by looking at the powerset of some

set. For a countable in�nite boolean algebra, we cannot proceed the same way,

since for �nite sets, the powerset is �nite, and for in�nite sets, the powerset is

uncountable. But we know by the main theorem of this section that a countable

boolean algebra must exists.2

5.4 The Upward Löwenheim�Skolem Theorem

In this section, we are going lo look in the opposite direction of what we have

just arrived at: While the Downward Löwenheim�Skolem Theorem shows the

existence of small models (where of course the exact meaning of small de-

pends on the formal language that is used for the formalization), the Upward

Löwenheim�Skolem Theorem will prove the existence of arbitrarily large models,

under certain provisos. Once we have proved this upward variant, there will be

two main conclusions to be drawn from this:

� For every �rst�order theory there are non�standard models, provided this
theory has at least one in�nite model; e.g. there are uncountable models

of Paeano�arithmetic.

� First�order formal languages are incapable of expressing cardinalities out-
sizeing their own cardinality. This is exempli�ed by the fact that when

considering Q as a structure for the language having as sole non�logical

symbol the binary relation�symbol �, ThQ has uncountable models; the
(rather poor, in terms of expressive power) language of order is unable to

distinguish countable from uncountable.

2A direct approach to this is to show that fs 2 N; s �nite or N r s �niteg is a countable
in�nite boolean algebra. But there are more re�ned variants of this result which no longer can
be veri�ed by such a direct construction, i.e. the existence of an atom�free countable boolean
algebra.
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We have to face the question about a method to force structures to exceed

certain cardinalities. As in the previous section, the tool to ensure great sizes

of models is the language itself (cf. 4.2.2 for the de�nition of LC):

Lemma 5.4.1 Let L be a formal language, and let C := fc� ; � < �g be a set
of cardinality � of (pairwise distinct) constant�symbols (which may or may not

belong to L). Let LC be the formal language L with the elements of C added as
constants (if necessary), and let � � SenLC be given by � := f:c _=c0 ; c; c0 2
C; c 6= c0g. Then for any LC�structure A, if A j= �, then cardA � �.

Proof. Exercise.

Proposition 5.4.2 Let L be a formal language and � � SenL. Moreover, let
C be an in�nite set of constant�symbols not in L. Then

� [ f:c _=c0 ; c; c0 2 C; c 6= c0g has a model i¤ � has a model:

Proof. Let � := f:c _=c0 ; c; c0 2 C; c 6= c0g.
If � [ � has a model, say A, then by lemma 5.4.1, cardA � cardC, so A is an

in�nite model, and it is clearly also a model of �.

Conversely, if � has an in�nite model A, then for any �nite �0 � � and any �nite
�0 � �, A j= �0 [ �0, where the new constant�symbols in �0 are interpreted
as arbitrary, pairwise distinct elements of A. It follows that any �nite subset of
� [ � has a model, so by compactness, � [ � itself has a model.
As an exercise, analyze the proof of Proposition 5.4.2 to �nd out why the

model of � has to be in�nite.

Theorem 5.4.3 (Upward Löwenheim�Skolem Theorem)
Let L be a formal language and A 2 StrL be in�nite. Then, for any � �k L k
there is an L�structure B with B � A and cardB = �.

Proof. Let � := ThA, let C be a set of � distinct new constant�symbols not

in L, and � := f:c _=c0 ; c; c0 2 C; c 6= c0g.
By Proposition 5.4.2, �[ � has a model. Thus, by the Downward Löwenheim�
Skolem Theorem 5.3.1, �[� has a model B with cardB � card(C[ k L k) = �,

and from Lemma 5.4.1, we know that cardB � �. Therefore cardB = �, and

clearly B � A because B j= ThA.

Corollary 5.4.4 No theory has exclusively countable in�nite models.

In the context of axiomatizations of N, this implies that if we �nd the classical
countable in�nite model as a model of any axiomatization, we also �nd models
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of any uncountable in�nite cardinality! Clearly these models no longer qualify

as classical models since they simply have too many elements.

Corollary 5.4.5 There is no theory such that any two in�nite models are iso-
morphic.

Proof. ... because �isomorphic�clearly implies �of the same cardinality�.

Exercise 5.4.6 Show that there is a set � of L�sentences (for an adequate
language L) such that A is a model for � i¤A has either exactly one or in�nitely
many elements.

(Hint: Consider � := f(8x8y x _=y) _ :c _=c0; c; c0 2 C; c 6= c0g for adequate C.)

We conclude this section by hinting at the possibility of an alternative, more

semantically oriented proof of the Upward Löwenheim�Skolem Theorem 5.4.3.

But for the moment, however, we do not have the necessary tools to perform

this aproach and therefore postpone it to Section 7.4.
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Chapter 6

Theories

Since both the de�nition of �elementary� as well as that of �theory� rely on

the operators Th and Mod, we are confronted with a syntactical notion de�ned

in semantical terms and a semantical notion de�ned in syntactical terms. Nat-

urally, one might ask if these circumnavigations are necessary. Hence, we will

look for more direct ways of expressing that some set of L�sentences is a theory
or some class of L�structures is elementary, allthewhile we will remain in the
realm the respective notion belongs to. In Chapter 8 we will see that, contrary

to the seeming symmetry of the de�nitions, the complexities of the two tasks

di¤er considerably; the one concerning theories is rather simple and direct, while

the characterization of elementary classes involves non�trivial constructions and

results.

6.1 Theories and Complete Theories

A generally accepted way to represent the fact that a sentence � is deducible

from the empty set of premises is

` �;

thereby insinuating that, in order to prove �, we do not have to make any ad-

ditional assumptions whatsoever. We thus see that very small sets of premises

may have considerable logical implications. The general rule is: �More assump-

tions imply more conclusions�. However, there is always the possibility that a

set � of sentences already contains every sentence which might be deduced from

it. Such a set of sentences is said to be deductively closed.

De�nition 6.1.1 Let L be a formal language.

69
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(i) For � � SenL, de�ne Ded�, the deductive closure of �, to be the set
of all sentences deducible from �,

Ded� :=f� 2 SenL ; � ` �g :

(ii) � � SenL is called deductively closed i¤ � = Ded�.

From De�nition 6.1.1 it follows immediately that � � SenL is deductively
closed if and only if for any � 2 Aus(L),

� ` � i¤ � 2 �:

Let L be a formal language, � � SenL, and consider an L�sentence � with

� 2 ThMod�:

The de�nition of Th (cf. De�nition 4.1.2) implies that A j= � for any A 2
Mod�, and with the de�nition of Mod, we �nd that A j= � =) A j= � for any

A 2 StrL, i.e. � j= �.

Gödel�s Completeness Theorem 2.4.1 states that this last statement is equiv-

alent to � ` �, which is the same as � 2 Ded�.
This hints at the way to prove the following Lemma, which reformulates

Gödel�s Completeness Theorem by using the operators Mod, Th and Ded.

Lemma 6.1.2 For � � Aus(L),

ThMod� = Ded�:

Proof. Exercise.

Theorem 6.1.3 (Theories)
� � SenL is a theory i¤ � is deductively closed.

Proof. Follows immediately from Lemma 6.1.2.

Thus, the Theorem 6.1.3 characterizes theories as the �xed points of the

operator Ded, and thereby provides a de�nition of theories via the purely syn-

tactical notion of �deductively closed�.

Example 6.1.4

(i) The �smallest� L-theory for any formal language L is obtained from

� = ;. It follows that

ThMod ; = Ded ; = �the set of all theorems of L� 6= ;
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(ii) On the other hand, we can see that the �largest�L-theory is SenL, where

ThModSenL = Th ; = SenL:

Please keep in mind that the smallest theory is not the empty set. We can,

however, say that the smaller the theory, the larger the associated elementary

class of models, and vice versa. The largest theory SenL is special in the sense
that it is inconsistent, and, moreover, that it is the only inconsistent L�theory
(Proof: Exercise). Thus, it is only natural to ask if there are any maximal

theories among the consistent ones. Due to the contra�variant behaviour1 of

the operators Th and Mod, we must have a closer look at the theories of small

classes of models which are yet not too small (i.e. not empty).

De�nition 6.1.5 � � SenL is called complete i¤ � = ThfAg for a single
L-structure A.

The proof of the following Lemma is a simple exercise.

Lemma 6.1.6 Complete sets of sentences are theories.

The semantic characterization of complete sets of L�sentences is as simple
(and accurate, as will be shown below!) as it can be, i.e. complete sets of

L�sentences are characterized by a single L-structure. The syntactical charac-
terization is, among other results, provided by the next theorem. For further

applications, statement (v) is of special importance.

Theorem 6.1.7 (Complete theories)
For a consistent theory �, the following statements are equivalent:

(i) � is complete.

(ii) � is maximally consistent.

(iii) For any � 2 SenL: either � ` � or � ` :� (but not both).

(iv) For any A;B 2 Mod�: A � B.

(v) � = ThfAg for any A 2 Mod�.

Proof (Excerpt). (i)) (ii): Consider � = ThfAg and � 62 �. Then, A 6j= �,

so A j= :�, but then �[f�g is inconsistent. Thus, we have shown that any set
1 I.e. �1 � �2 =) Mod�1 � Mod�2; similarly for Th.
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of L�sentences expanding � is inconsistent, thus, � is maximally consistent.
(ii)) (iii): If � 6` �, then, thanks to the maximal consistency of � we have
:� 2 � and so clearly � ` :�.
Exercise 6.1.8 i Find proofs for the remaining implications in Theorem

6.1.7 .

ii Where is the consistency of � being used? Which implications still hold

if consistency is dropped as a premise?

The following examples are presented without proofs:

Example 6.1.9 (Algebraically closed �elds of characteristic 0)
Let L = f+;�; �; 0; 1g be the formal language for rings and �elds.
Let F be an algebraically closed �eld2 of characteristic3 0. It is possible

(though not for us, at the moment) to show that Th(F ) = Th(C). Thus, the
theory of algebraically closed �elds of characteristic 0 is complete, and any

algebraically closed �eld of characteristic 0 is elementary equivalent to the �eld

of complex numbers C. In other words, to verify that a sentence � in the

language L of rings holds for all algebraically closed �elds of characteristic 0,
we just have to show that C is a model of � (a task which, depending on the
complexity of �, may involve quite a lot of functional calculus).

Example 6.1.10 (Order theories)
(For the less algebraically inclined.) Let L0 = f<g, i.e. L0 contains < as the

only non�logical symbol. Consider the set � :

�1: 8x :(x < x) Irre�exivity

�2: 8x; y; z (x < y ^ y < z ! x < z) Transitivity

�3: 8x; y (x < y _ x :
= y _ y < x) Totality or linearity

�4: 8x; y (x < y ! 9z (x < z ^ z < y)) Density

�5: 8x9y; z (y < x ^ x < z) No endpoints

An L�structure A 2 Mod� is called a dense order without endpoints, and we
thus designate the theory of Mod� by �DOWE .

It is quite plausible that both Q and R are dense orders without endpoints.

Clearly, though, they are quite di¤erent; more precisely, they are not isomorphic,

since Q is countable while R is not. However, with the expressive power of L,
2 I.e. in F , every polynom f(x) can be written as a product of linear and constant polynoms:

f(x) = c(x � �1) � � � (x � �n). From earlier experiences in elementary math, you probably
remember that this is one of the most prominent features of the complex numbers.

3The characteristic of a �eld is the order of 1, the neutral element of multiplication, in
the (additive!) group hF;+; 0i. Thereby �characteristic 0�stands for �in�nite characteristic�.
Note that a �nite �eld always has characteristic di¤erent from 0, whereas the converse is false.
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we are indeed unable to tell them from one another, since it can be shown (cf.

Section 6.2) that �DOWE = Th(Q). Especially, �DOWE is complete and any two

models of �DOWE are thus elementary equivalent.

Exercise 6.1.11

i Verify that a set � of sentences having both �nite and in�nite models is

never complete.

ii Verify that a set � of sentences having �nite models of di¤erent cardinal-

ities is never complete.

iii Show that this does not hold for � having in�nite models of di¤erent

cardinalities.

Let us now have a look at a nice property of complete theories: If one

complete theory is included in the other, then they are the same!
Corollary 6.1.12 i For complete theories �;� � SenL:

� � � i¤ � = �:

ii For L�structures A;B:

ThA � ThB i¤ A � B:

Proof.

i Let �;� � SenL be complete and � � �. Let � 2 SenL r �. Then,
:� 2 �, thus :� 2 � and thus � 62 �. Therefore � = �.

ii Almost too easy to be an exercise.

6.2 Proving Completeness of Theories: An Ex-

ample

In this section we intend to give a proof of the completeness of the theory of

dense orders without endpoints, �DOWE . This theory is axiomatized by a �nite

set f�1; : : : ; �5g of axioms in the language L having the binary relation symbol
� as sole non�logical component. The proof of the completeness of �DOWE

roughly consists states and uses a corollary of the upward Löwenheim�Skolem
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Theorem and then shows that, up to isomorphism, there is only one countable

dense order without endpoints. Proving the latter statement, we will introduce

a technique widely used in model theory, the back�and�forth�construction.

Robert Lawson Vaught (1926�2002)

Corollary 6.2.1 (×ós-Vaught Test) Assume � � SenL has only in�nite

models and, for some cardinal � � maxf@0; cardLg, any two models of � having
cardinality � are isomorphic. Then � is complete.

Proof. Let A and B be any two models of �. Then by the Löwenheim�Skolem
Theorems (either upward or downward, depending on the cardinality of A and

B), we �nd models A0 and B0 having cardinality � such that A � A0 and B � B0.
But then A0 �= B0 by assumption, whence A0 � B0, and we conclude

A � A0 � B0 � B:

So we showed that any two models of � are elementary equivalent, which is

equivalent to � being complete.

As we mentioned earlier, elementary equivalence is � as a criterion of iden-

ti�cation � coarser than isomorphism. In the following we will show that, up

to isomorphism and thus also up to elementary equivalence, there is only one

countable dense order without endpoints. Using Vaught�s Test we may thus

conclude that �DOWE is complete and, hQ;�i being a model of �DOWE , any

dense order without endpoints is elementary equivalent to hQ;�i. But we do
not claim that R and Q are isomorphic as dense orders without endpoints (they
are not of the same cardinality), nor do we claim that any two uncountable dense

orders without endpoints, even if they have the same cardinality, are isomorphic.

From 6.1.10, recall the axioms for the theory �DOWE of dense orders without

endpoints.

Proposition 6.2.2 Any two countable models of �DOWE are isomorphic.

Proof. The proof is done using the back�and�forth�construction which
delivers an isomorphism via (in the general case trans�nite) induction.
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Suppose A and B are countable models of �DOWE . So we �nd enumerations4

han ; n 2 Ni of jAj and hbn ; n 2 Ni of jBj. We will now de�ne new enumerations
ha0n ; n 2 Ni of jAj and hb0n ; n 2 Ni of jBj such that the assignment a0n 7! b0n is

order�preserving and thus de�nes an isomorphism from A to B. This again is
done by a countable variant of trans�nite induction:

Assume that for any i; j < n, a0i < a0j i¤ b
0
i < b0j . We distinguish the following

two cases:

� if n is even, say n = 2m, we de�ne a0n := ak such that k is minimal

with ak 62fa00; : : : ; a0n�1g. Then we have to consider the following three
subcases:

� a0n < a0i for all i < n, in which case we choose b0n such that b
0
n < b0i

for all i < n, which can be achieved since B has no endpoints; or

� a0n > a0i for all i < n, in which case we choose b0n such that b
0
n > b0i

for all i < n, which can be achieved for the same reason; or

� a0i < a0n < a0i+1 for some i < n, in which case we choose b0n such that

b0i < b0n < b0i+1 for all i < n, which can be achieved since � is dense

on B.

� if n is odd, say n = 2m+1, we de�ne b0n := bk such that k is minimal with

bk 62fb00; : : : ; b0n�1g. Again we are to face three subcases which are dealt
with as above, switching the a�s and b�s and A and B respectively.

To show that the assignment a0n 7! b0n does indeed de�ne an isomorphism

between A and B (i.e. an order�preserving bijection with order�preserving

inverse) is left as an exercise.

As an illustration, let�s have a look at how this back�and�forth mechanism

could work in detail. Suppose we are given an enumeration hqn ; n 2 Ni of Q and
an enumeration hbn ; n 2 Ni of B =h(0; 1) \Q;�i. Note that B thus de�ned is a
countable models of �DOWE . The construction starts at n = 0, where we are to

take q0 and assign it to any bi (no constraints so far). So let�s say q00 = q0 = 0,

and for b00 we chose b220364, which happens to be, say, 5=13. The next step

(n = 1) goes from B to Q. So we are to take for b01 the bi with smallest i not
yet dealt with, which is clearly b0, say 19=69. Since b01 < b00, we must take for

q01 some rational number smaller that q
0
0, so let�s say q

0
1 = �1, which happens

to be some qi, say q1, by some fancy coincidence. The next step is n = 2, so we

start with Q again, taking for q02 the qi with smallest i not yet treated, which

happens to be q2, say q2 = 1. Then q02 > q00; q
0
1, so we have to �nd a b

0
2 which is

4An enumeration of a set X is a bijection from N onto X, i.e. a map from N to X, which
justi�es to write the enumeration as hxn ; n 2 Ni.
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strictly greater than both b00 and b
0
1, which could be 37=95 or any other rational

number strictly between 5=13 and 1. And so on ... .

Exercise 6.2.3 Run the �rst few steps with your favorite enumerations of Q
and (0; 1)\Q. (If you do not have a favorite enumeration of (0; 1)\Q, take the
enumeration of Q and restrict it to the interval (0; 1).)

The above proof may be paraphrased as follows: A countable dense order

without endpoints has an overall similarity in the sense that any non�empty

open sub�interval looks exactly like the set itself, so the same holds for any two

open sub�intervals. By assigning the �rst element of A to some b00, we divide

both A and B into two sub�intervals which have this mutual similarity. But
then we may continue, using the same argument for these sub�intervals, and so

on. In a way you could say that dense orders without endpoints have a �exibility

which allows them to be stretched without altering the structural information.

Now, for the case of uncountable dense orders without endpoints, we consider

the following example:

Example 6.2.4 Let A be the subset of R given by A :=f� 2 R ; 0 < � < 1g
[ fq 2 Q ; 1 � q < 2g. Then

� A is uncountable since it is the union of a countable and an uncountable
set;

� A =hA;�i is a dense order without endpoints since the axioms �1; : : : ; �5
are satis�ed in A (Exercise: verify this!);

� but A is not isomorphic to R! To see this, �rst note that an isomorphism,
being a homomorphism after all, is bound to map intervals onto intervals

since it preserves the order �; now, assuming � : R �! A is onto and

order�preserving, we �nd a �0 2 R such that �(�0) = 3=2. But then � must
map the (open) interval f� 2 R ; �0 < �g to the set fq 2 Q ; 3=2 < q < 2g.
But then � cannot be 1�1 since it maps an uncountable set onto a countable

one.

Exercise 6.2.5 An example somewhat di¤erent would be to let A := R r f0g
and to show that hR;�i and A =hA;�i are not isomorphic. Does that work?
How about hQ;�i and hA \Q;�i?



Chapter 7

Ultraproducts

In this chapter we will take our �rst steps towards the de�nition of a technique

for building new models. This technique will unite the two tools of products and

quotients of structures, notions which readers are familiar with from earlier ex-

periences in algebra. Combining these notions, we will introduce ultraproducts,

which provide models for theories that are no longer elementary equivalent to

the models the construction is based upon.

The results we aim at are not basic and require some de�nitional input,

which we give in the following section.

7.1 Ultra�lters

For the following section, readers should recall the de�nition of cartesian prod-

ucts and their associated projections from Section 1.3).

De�nition 7.1.1 Let S be a set and, for s 2 S, let As be an L�structure.
Then, the direct product

Q
s2S As is de�ned as the following L�structure:

� The universe is the cartesian product of the universes, i.e.

j
Y
s2S

Asj :=
Y
s2S

jAsj

� The relation�, function�and constant�symbols are interpreted by compo-
nent, i.e., writing B for

Q
s2S As,

for all relation�symbols Ri and all a1; : : : ; a�(i) 2 j
Q
s2S Asj,

RBi (a1; : : : ; a�(i)) i¤, for all s 2 S, RAs
i (�s(a1); : : : ; �s(a�(i)));

77
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for all function�symbols fj and all a1; : : : ; a�(j) 2 j
Q
s2S Asj,

fBj (a1; : : : ; a�(j)) =hfAs(�s(a1); : : : ; �s(a�(j))) ; s 2 Si; and,

for all constant�symbols ck,

cBk =hcAs

k ; s 2 Si :

Of course the conventions in notation used for cartesian products (cf. Section

1.3) apply to direct products of structures as well.

We may be tempted to try building new models for theories from old ones

by simply using direct products of structures. However, as the following simple

counter examples show, direct products are too generous, in the sense that, in

general, they no longer belong to the given class of structures.

Example 7.1.2 The direct product of a family of �elds is, in general, no longer
a �eld (as an exercise, verify this by examining Z2 � Z2 for divisors of zero).
The direct product of a family of total orders is, in general, no longer a total

order (e.g. N� N).

The solution is to not consider the product per se, but merely an appropriate

quotient, i.e. we are going to work with reduced products. To de�ne the equiv-

alence suitable for our purposes, we need the following notion of ultra�lters.

De�nition 7.1.3 (Ultra�lter) Let S be any non�empty set. Then, a �lter
U � P(S) over S (cf. 1.5.3) is called an ultra�lter over S i¤

(iv) V � S implies [either V 2 U or S r V 2 U ].

We have attached the number (iv) to the clause to remind you that in De�-

nition 1.5.3, we already �xed three clauses which de�ne a system F as a �lter:

(i) U1; U2 2 F =) U1 \ U2 2 F ,

(ii) U 2 F ; U � V � S =) V 2 F , and

(iii) ; 62 F 6= ;.

Remark 7.1.4 An ultra�lter U over S is best thought of as a system of su¢ -

ciently large subsets, and with this in mind the above clauses can be read in the

following way.

1. (i) The intersection of two su¢ ciently large sets is still su¢ ciently large.

(ii) A set containing a su¢ ciently large subset is itself su¢ ciently large.
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(iii) The empty set is not su¢ ciently large.

(iv) Any set is either su¢ ciently large or else its complement is su¢ ciently

large.

Remark 7.1.5 Excluding P(S) from the collection of �lters is not a generally

accepted practice. Some authors include both P(S) and ; but distinguish them
from the so-called proper �lters.

Remark 7.1.6 If S is any nonempty set and X � P(S), we may ask whether
we can �nd a �lter U over S such that X � U . If there is such a �lter, then we
might just as well look at

T
fU � P(S) ; U is a �lter and X � Ug. By doing

this, we realize that there is a smallest �lter containing X , the so-called �lter
generated by X , in which case X is said to generate this �lter.

Remark 7.1.7 A further conclusion from the above is that a system X of

subsets of S generates a �lter i¤ X satis�es the �nite intersection property
f.i.p., by which we mean that

for any �nite subset fU1; : : : ; Ung� X we have U1 \ : : : \ Un 6= ;:

Satisfaction of the f.i.p. is a necessary and su¢ cient condition for being a subset

of a �lter. This is easily seen after showing that generating a �lter from a system

X means collecting all the supersets of �nite intersections of elements of X .

Remark 7.1.8 It is obvious that for any U � S with U 6= ;, fV � S ; U � V g
is a �lter over S. This �lter is clearly the �lter generated by fUg. We may even
�nd an ultra�lter by choosing, for some p 2 S,

U :=fU � S ; fpg � Ug=fU � S ; p 2 Ug;

i.e. by taking the �lter generated by X = ffpgg. U thus de�ned is called the
ultra�lter �xed at p.

Nevertheless, thinking of elements of U as su¢ ciently large (as we did in
Remark 7.1.4) will not work with �xed ultra�lters, since unrealistically

small subsets such as fpg are contained in U as well. Of greater interest
for our purposes are the free ultra�lters, i.e. ultra�lters U with\

U =
\
fU � S ; U 2 Ug= ;:

(As an easy yet illuminating exercise, the reader is asked to verify that an

ultra�lter U is �xed at some p 2 S i¤
T
U 6= ;.)
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1.

P (X)

{x}

U

Figure 7.1: A �xed ultra�lter

Remark 7.1.9 U is an ultra�lter if and only if U is a maximally proper �lter,
i.e. i¤ U is a �lter, U 6= P(S), and for any �lter V with U � V 6= P(S) we have
U = V.

1. To understand this, note that if U is an ultra�lter, V a �lter and U 2 VrU ,
then S r U 2 U � V, thus ; = U \ (S r U) 2 V, thus condition (iii) is
violated for V. For the other direction, if U is not an ultra�lter, then we
�nd a U � S such that both U =2 U and (S r U) =2 U . But then at least
one of the following holds:

for all V 2 U ; U \ V 6= ; or

for all V 2 U ; (S r U) \ V 6= ;:

We conclude that U [ fUg or U [ fS r Ug (or both) generate a �lter
properly extending U .

Remark 7.1.10 As an exercise, the reader may prove that U is an ultra�lter
over S if and only if U is a prime �lter over S, i.e. i¤, for any U; V � S,

U [ V 2 U implies U 2 U or V 2 U .

Remark 7.1.11 Closely related to the previous remark is the following obser-
vation (the proof of which is left as an exercise). Let U be an ultra�lter over
some set S and U 2 U , and suppose that U = U1 [ : : : [ Un (n 2 N). Then,
Ui 2 U for some i 2f1; : : : ; ng.
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1. If additionally Ui \ Uj = ; for all i; j 2f1; : : : ; ng, i 6= j, then Ui 2 U for
exactly one i 2f1; : : : ; ng.

Remark 7.1.12 (This is intended for those readers who are already familiar
with boolean algebras.) Regarding P(S) as a boolean algebra, we see that
�lters over S coincide with the inverse images of the largest element 1 under

some boolean algebra-homomorphism �.

If, moreover, � : P(S) �! B2 where B2 is the two�element boolean algebra,

then ��1(1B2
) is an ultra�lter. Thus,

1. ultra�lters coincide with the inverse images of 1B2
under boolean algebra

homomorphisms with codomain B2.

We have seen that �lters, even ultra�lters, are easily constructed as upper

closures under � of some U 2 P(S). Yet, as we have also mentioned, the �xed
ultra�lters we thus obtain are not our main concern here, for reasons we will

elaborate on later. The existence of free ultra�lters, on the other hand, is not

obvious at all, as is shown by the (unavoidable!) use of Zorn�s Lemma in the

proof of the following Lemma.

Lemma 7.1.13 The following holds for any non�empty set S:

1. Any family X � P(S) having the f.i.p. generates a (proper) �lter.

2. Every proper �lter F over S is contained in some ultra�lter U � F over

S.

Proof.

1. This is just an elaboration of our observations concerning the generation

of �lters. Suppose X � P(S) has the f.i.p., and let

F :=fU � S ; X1 \ : : : \Xn � U for some X1; : : : ; Xn 2 Xg:

We must check conditions (i) �(iii) for �lters.

(i) If U1; U2 2 F , then X1 \ : : : \Xn � U1 and Y1 \ : : : \ Ym � U2 for

some X1; : : : ; Xn; Y1; : : : ; Ym 2 X . It follows that

X1 \ : : : \Xn \Y1 \ : : : \ Ym � U1 \ U2;

so U1 \ U2 2 F .



82 CHAPTER 7. ULTRAPRODUCTS

(ii) If U 2 F and U � V , then

X1 \ : : : \Xn � U for some X1; : : : ; Xn 2 X ;

but then also X1 \ : : : \Xn � V , so V 2 F .

(iii) ; =2 F by f.i.p., and F 6= ; since X � F .

2. Let F be a proper �lter over S and let

P :=fV � P(S) ; V is a �lter over over S and F � Vg :

P 6= ; since F 2 P . Now take any non�empty chain1 C � P and let

V0 :=
S
C. Then, we see that V0 is a �lter over S: We verify this again

by checking (i) �(iii) for �lters:

(i) If U1; U2 2 V0, then U1 2 V1 and U2 2 V2 for some V1;V2 2 C. But
then, since C is a chain, U1; U2 2 V1 or U1; U2 2 V2 and thus, since
V1 and V2 are �lters, U1 \U2 2 V1 or U1 \U2 2 V2, so U1 \U2 2 V0.

(ii) If U 2 V0 and U � V , then U 2 V for some V 2 C, but then V 2 V
since V is a �lter, thus V 2 V0.

(iii) ; =2 V0 since otherwise ; 2 V for some V 2 C, contradicting the fact
that all V 2 C are �lters; V0 6= ; since F 6= ; and F � V0.

As we can see, V0 2 P is an upper bound for C in P . Using Zorn�s Lemma,
we �nd that there is a maximal element U in P , i.e. U is a maximal �lter
containing F . Using the remark above, we see that U is an ultra�lter

extending F .

Please note the use of Zorn�s Lemma in the proof. Actually, the statement of

Lemma 7.1.13 2 can be shown to be equivalent to Zorn�s Lemma and thus also to

the Axiom of Choice. Readers who are somewhat familiar with the history and

axiomatics of Set Theory will remember that one of the disadvantages of using

the Axiom of Choice in a proof of existence is the non�constructive nature of

that proof. In the above situation, this means that we will work with ultra�lters

to construct models without constructing the ultra�lters themselves. Thus the

models whose existence we are proving will remain hidden from us by the veil

of non�constructiveness. However, even their existence has many interesting

implications, as we shall see later.

1 I.e. for all V1;V2 2 C, V1 � V2 or V2 � V1. On this occasion, please recall Zorn�s Lemma
(cf. Section ??) since this is the technique of proof used here.
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Next, we want to rephrase the above Lemma 7.1.13 and reduce it to the most

commonly used form. Combining clauses 1. and 2., we �nd the next lemma.

Lemma 7.1.14 (Existence of Ultra�lters)
Let S be any non�empty set. Then, any family X � P(S) having the f.i.p. is
contained in some ultra�lter U � X over S.

A word of warning: In no way is the ultra�lter extending X required to

be unique. This is clear from the observation that any �lter contains S, thus

X = fSg is contained in any �xed ultra�lter, of which we �nd the same number
as there are elements in S, and with this we have not even accounted for the

free ultra�lters.

We are now going to introduce an example for a �construction�of free ul-

tra�lters, which is very popular since it gives rise to a great variety of useful

examples of reduced products as will be shown later. For this, we will use the

following de�nition.

De�nition 7.1.15 Let S be any set. A subset T � S is called co��nite i¤
S r T is �nite. PcofS :=fT � S ; T is co��niteg.

Of course for �nite sets S, PcofS = P(S). In�nite sets tend to be more
interesting, as we can see in the following example.

Example 7.1.16 Let F be given by F = PcofN. Then, F has the f.i.p.;

furthermore, F is even a �lter, the so�called Fréchet�Filter, over N. (To show
that F is a �lter, recall that, by DeMorgan�s Laws,

T1 \ : : : \ Tn = Nr ((Nr T1) [ : : : [ (Nr Tn)):

The rest should present no real problems and is left as an exercise.) Using

Lemma 7.1.14 we �nd that there is an ultra�lter U over N with PcofN � U .
We note that for such a U ,

T
U = ;, since for any n 2 N, N r fng 2 U , and

already
T
fNr fng ; n 2 Ng= ;, so any ultra�lter extending the Fréchet�Filter

is a free ultra�lter.

Here is another nice example we will use later, e.g. when formulating and

proving a semantical analog for the Compactness Theorem 2.4.5.

Example 7.1.17 For X 6= ;, let S :=fs � X ; s �niteg and, for x 2 X,

Tx :=fs 2 S ; x 2 sg.
Let F � P(S) be given by F :=fTx ; x 2 Xg. Then, F has the f.i.p., since



84 CHAPTER 7. ULTRAPRODUCTS

P(S)

finite sets

U

cofinite sets

infinite sets with
infinite complements

Figure 7.2: A free ultra�lter

clearly fx1; : : : ; xng� Txi (i = 1; : : : ; n), thus

fx1; : : : ; xng� Tx1 \ : : : \ Txn :

(As an exercise: Can you tell whether F is a �lter or not?)

Using Lemma 7.1.14 we once more �nd:

There is an ultra�lter U over S with F � U .
Is U �xed or free? Assume U is �xed, i.e for some s 2 S, s 2

T
F . This is

equivalent to

s 2 Tx for all x 2 X

and this again is the same as

x 2 s for all x 2 X:

This means that s 2
T
F if and only if s = X. Since s 2 S is �nite, the

above leads to a contradiction if X is in�nite. Hence we �nd, for in�nite X, no

s 2
T
F �

T
U and thus clearly

T
U = ;. We conclude that if X is in�nite,

then any ultra�lter extending F is free.
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7.2 Ultraproducts

We now have all the necessary tools to de�ne ultraproducts. Recall from Sec-

tion 1.5 the de�nition of direct and reduced products as well as those of their

associated canonical projections.

De�nition 7.2.1 Let L be a formal language and, for s 2 S, let As be an
L�structure. Let U be an ultra�lter over S. The relation �U on

Q
s2S jAsj is

de�ned by

has ; s 2 Si�U hbs ; s 2 Si i¤ fs 2 S ; as = bsg2 U

for any has ; s 2 Si; hbs ; s 2 Si2
Q
s2S jAsj.

The relation �U is an equivalence relation. Re�exivity and symmetry are
trivial to prove, and transitivity follows easily from the fact that U is closed

under intersection. (Exercise: Why?)

Let us now consider the quotient
Q
s2S jAsj= �U and de�ne on it interpre-

tations for the function�, relation�and constant�symbols of L. We will �nd a
new L�structure, the so called ultraproduct of the family hAs ; s 2 Si under U ,
which we will denote by

Q
s2S A=U . For further convenience we will write �U

instead of ��U for the canonical projection.

De�nition 7.2.2 (Ultraproducts of L�Structures)
The L-structure A =

Q
s2S As=U , the ultraproduct of the family hAs ; s 2 Si

under U , is de�ned as follows:

1. Universe:
jAj :=f�U (a) ; a 2

Y
s2S

jAsjg :

2. Relations: For a relation�symbol Ri, we de�ne

RAi (h�U (a1); : : : ; �U (a�(i))i)

i¤

fs 2 S ; RAs
i (h�s(a1); : : : ; �s(a�(i))i)g2 U

for all a1; : : : ; a�(i) 2
Q
s2S jAsj.

3. Functions: For a function�symbol fj , we de�ne

fAj (�U (a1); : : : ; �U (a�(j))) := �U (hfAs
j (�s(a1); : : : ; �s(a�(j)) ; s 2 Si)



86 CHAPTER 7. ULTRAPRODUCTS

for all a1; : : : ; a�(j) 2
Q
s2S jAsj.

4. Constants: For a constant�symbol ck, we de�ne

cAk := �U (hcAs

k ; s 2 Si):

Exercise 7.2.3 Verify that this is a valid de�nition, i.e. show that

1. if a1 �U b1; : : : ; a�(i) �U b�(i), then

RAi (�U (a1); : : : ; �U (a�(i))) i¤ R
A
i (�U (b1); : : : ; �U (b�(i)));

2. if a1 �U b1; : : : ; a�(j) �U b�(j), then

fAj (�U (a1); : : : ; �U (a�(j))) = fAj (�U (b1); : : : ; �U (b�(j))):

Simplifying our notation further, we will sometimes use the following nota-

tional conventions for a 2
Q
s2S jAsjs, s 2 S, ultra�lters U and valuations h inQ

s2S jAsjs:

a(s) := as := �s(a) and aU := �U (a);

hs := �s � h and hU := �U � h:

In this simpli�ed notation, the de�nition above would be written as follows:

1. jAj :=faU ; a 2
Q
s2S jAsjg

2. fAj (a1U ; : : : ; a�(j)U ) :=hfAs
j (a1s; : : : ; a�(j)s) ; s 2 SiU

3. ha1U ; : : : ; a�(i)U i2 RAi i¤ fs 2 S ; ha1s; : : : ; a�(i)si2 RAs
i g2 U

4. cAk :=hc
As

k ; s 2 SiU

Concerning the valuation it is also worth noticing that

1. for any s 2 S and for any valuation h0 into As, there is a valuation h intoQ
s2S As such that hs = h0;

2. for any s 2 S and for any valuation h0 into
Q
s2S As =U , there is a valua-

tion h into
Q
s2S As such that hs = h0.

One more special case must be mentioned before we can look at some results.

De�nition 7.2.4 If for some set S 6= ;, As = B for all s 2 S (i.e. all the

factors are the same), then we write BS=U for
Q
s2S As =U and call this the

ultrapower of B to S under U .
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Example 7.2.5 Let us have a look at the direct product of linear orders. Let
A be the two�element chain, i.e. A := hf0; 1g;�i where 0 � 1. Now, looking at
the direct power B := AN, it is evident that B is not a linear order, since e.g.
h0; 1; 1; 1; : : :i and h1; 0; 0; 0; : : :i are not comparable under �B. On the other
hand, if we let U be an ultra�lter over N and C := B=U , everything turns out to
be comparable again. Suppose we �nd a; b 2 jBj such that aU �C bU does not
hold. Then, by the de�nition of the interpretation of relations in ultraproducts,

fn 2 N ; an � bng=2 U ;

but since U is an ultra�lter, this is the same as

Nr fn 2 N ; an � bng2 U ;

and this in turn is equivalent to

fn 2 N ; an 6� bng2 U ;

and �nally, since A is a linear order, this means

fn 2 N ; bn � ang2 U ;

which, by the de�nition of �C , means bU �C aU . So, from the assumption that

aU �C bU does not hold, we proved that bU �C aU holds. This is exactly the
de�nition of �linear order�. Thus, we found that our ultrapower of linear orders

is, unlike the direct product, indeed a linear order.

Example 7.2.6 Reconsidering the previous example, we may wonder just how
large this ultraproduct is. Set Theory tells us that the direct product has the

same cardinality as P(N) and is thus uncountable. However, using an argument
very similar to the one we applied to show that C is linearly ordered by �C , we
can show that C is actually rather small: For a 2 jBj arbitrary, we know (by
the de�nition of ultra�lters) that exactly one of the sets Ta;0 and Ta;1 is in U ,
where

Ta;i :=fn 2 N ; an = ig (i 2 f0; 1g):

Thus,

either aU = h0; 0; 0; : : :iU or aU = h1; 1; 1; : : :iU :

Also, clearly h0; 0; 0; : : :iU 6= h1; 1; 1; : : :iU . Hence, we have shown that the
universe of C consists of exactly two elements. (The Theorem of ×ós 7.2.11 puts
this result in a wider context. We will see that ultrapowers of �nite structures
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are of the same cardinality as their sole factor.)

Example 7.2.7 What is the point of all this? We constructed an ultrapower
and, after musing about this new structure for a few minutes, were able to prove

that we have gained absolutely nothing. However, we constrained ourselves in

two ways: �rst, by looking at an ultrapower, and second, by taking a �nite

structure as the starting point of our venture. (Note that we did not make any

assumptions about U being �xed or free.) This and the next example show that
even dropping one of these limitations is enough to make the ultraproduct di¤er

from its original structures.

For A take the set of natural numbers N together with the natural order � and
the function +. Again, let S := N and U be a free ultra�lter over S expanding
the Fréchet�Filter. Let B := AN and C := B=U .
We notice that C is in�nite (as is N), since for m;n 2 N;m 6= n we have

hm;m;m; : : :iU 6= hn; n; n; : : :iU . Yet, something has indeed changed. Remem-
ber that the Archimedean Property of N expresses the fact that any natural

number n can be reached by a consecutive sum of 1�s with just enough sum-

mands:

n � 1 + : : :+ 1| {z }
n summands

:

This property is no longer valid for our ultrapower C; i.e. for example for

a = h0; 1; 2; : : :iU , there is no way of writing a as a �nite sum of 1�s. This

follows from the fact that

for any m 2 N; hm;m;m; : : :iU �C h0; 1; 2; : : :iU ;

which in itself follows from

fs 2 N ; hm;m;mis � h1; 2; 3; isg= fm;m+ 1;m+ 2; : : :g 2 U

by co��niteness, since f0; 1; : : : ;m � 1g is �nite. Thus, you could say that C
looks like N with additional in�nitely large elements. However, please be aware
that we did not give a �rst�order formula expressing the Archimedean Property

or its consequence above.

Example 7.2.8 Now let, for s 2 N, As := hf0; 1; 2; : : : ; sgi; i.e. A is an L�
structure for the formal language L lacking any non�logical symbols. As before,
our index set is N and the ultra�lter U is supposed to expand the Fréchet�Filter.
Let C be the ultraproduct of hAs ; s 2 Ni under U .
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Now consider the following elements of C:

a0 := h0; 0; 0; 0; 0; : : :iU
a1 := h0; 1; 1; 1; 1; : : :iU
a2 := h0; 1; 2; 2; 2; : : :iU
: : :

an := h0; 1; 2; : : : ; n� 1; n; n; n : : :iU
: : :

(Exercise: Show that those are actually elements of the universe of C.)
With an argument analogous to the one we used in the previous example to

show that a is in�nitely big, we can now show that all the ai�s are pairwise

distinct, from which we conclude that we are dealing with an example of an

ultraproduct of �nite structures which is no longer �nite. Since a �nite structure

is never elementary equivalent to an in�nite one, we have here an example of

an ultraproduct which is not elementary equivalent to any of its factors.

Examples 7.2.7 and 7.2.8 instantiate the central aspects and motivations

which have led us to consider ultraproducts in the �rst place:

� By building the �in�nitely large�element of the ultrapower of N we entered
the realm of non�standard models of the axioms of the natural numbers.

The proof of ×ós�s Theorem 7.2.11 (cf. Appendix A) will make it clear

that the di¤erence between N and the non�standard structure provided

by the ultrapower�construction is not a distinction that can be expressed

in First�Order Logic; in other words, First�Order Logic cannot prevent

the axioms of N from having models with in�nitely large elements.

� We will later show that an ultraproduct of �nite structures can be in�nite
and that elementary classes are necessarily closed under ultraproducts.

These observations together yield the following generalization: Suppose

in an elementary class K, we �nd, for every n 2 Nrf0g, a �nite structure
An such that An has at least n elements; from this we can conclude that

there is also an in�nite structure in K. In a more concrete example, this
implies that �nding an axiomatization of exactly the �nite groups in terms

of First�Order Logic is a task that is bound to fail.

Exercise 7.2.9 By using arguments similar to the ones used in the above

examples, show that:

1. The direct product of a family of �elds is not necessarily a �eld. (Hint:

concentrate on the fact that in a �eld a � b = 0 implies a = 0 or b = 0).
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2. In an ultraproduct of a family of �elds a � b = 0 implies a = 0 or b = 0.

We will now turn our attention towards the main result of this chapter,

the Main Theorem on Ultraproducts 7.2.11. Although its proof is deferred to

Appendix A, a few introductory lemmata will be helpful to understand the the

full extent of this result�s implications.

For the relationship between interpretations of terms and the projections,

we note the following Lemma.

Lemma 7.2.10 If hAs ; s 2 Si is a family of L�structures and C =
Q
s2S As =U

the ultraproduct of this family under the ultra�lter U , then for any L�term t

and any valuation h into
Q
s2S As,

1. tC [hU ] = (tB[h])U , and

2. tAs [hs] = (t
B[h])s for any s 2 S.

Proof. We proceed by structural induction over the de�nition of L�terms,
thereby we will deal with both statements simultaneously:

1. � If t is a variable x, then

tC [hU ] = hU (x) = �U � h(x)

= (h(x))U = (t
B[h])U

and

tAs [hs] = hs(x) = �s � h(x) = (h(x))s = (tB[h])s:

� If t is a constant�symbol ck, then

tC [hU ] = cCk = (c
B
k )U = (t

B[h])U

and

tAs [hs] = cAs

k = (cBk )s = (t
B[h])s:

� If t = fj(t1; : : : ; t�(j)) for a function�symbol fj and L�terms t1; : : : ; t�(j),
then
tC [hU ] = fCj (t

C
1 [hU ]; : : : ; t

C
�(j)[hU ])

= fCj ((t
B
1 [h])U ; : : : ; (t

B
�(j)[h])U )

(by the induction hypothesis)

= (fBj (t
B
1 [h]; : : : ; t

B
�(j)[h]))U

(by the de�nition of fCj )

= (tB[h])U
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and
tAs [hs] = fAs

j (tAs
1 [hs]; : : : ; t

As

�(j)[hs])

= fAs
j ((tB1 [h])s; : : : ; (t

B
�(j)[h])s)

(by the induction hypothesis)

= (fBj (t
B
1 [h]; : : : ; t

B
�(j)[h]))s

(by the de�nition of fAs
j )

= (tB[h])s:

Please note that we took advantage of a universal property of the projections

�s and the direct product
Q
s2S As:

h�s(a) ; s 2 Si= a for any a 2
Y
s2S

As :

We are now going to state the Main Theorem on Ultraproducts. Its proof

is deferred to Appendix A, because it is rather technical and does not lead to

further enlightment with respect to the theorem or its applications.

Theorem 7.2.11 (×ós, Main Theorem on Ultraproducts)
For a formal language L let hAs ; s 2 Si be a family of L�structures and U be
an ultra�lter over S. For the sake of readability, let B :=

Q
s2S As be the direct

product and A := B=U the ultraproduct of the family hAs ; s 2 Si under U .
Then, the following two statements hold:

1. For any valuation h into B and for any L�formula ',

A j= '[hU ] i¤ fs 2 S ; As j= '[hs]g2 U :

2. For any L�sentence �,

A j= � i¤ fs 2 S ; As j= �g2 U :

Proof. Cf. Appendix A.

When applied to free ultraproducts, ×ós�s Theorem states that a formula

holds if it is satis�ed in su¢ ciently many factor�structures. Note that for a

�xed ultra�lter, say U =fU � S ; p 2 Ug, the second part of ×os�s Theorem
reads as

C j= '[hU ] i¤ As j= '[hs]:
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Figure 7.3: Jerzi ×ós (1920-1998)

A more elegant formulation can be found for the special case of ultrapowers:

Ultrapowers are elementary equivalent to their factor.

Corollary 7.2.12 (Ultrapowers) For any L�structure A, any non�empty
set S and any ultra�lter U over S,

AS=U� A:

Proof. If you notice that for any L�formula ', TA
S=U

h (') is either S or ;, then
you will not come across any di¢ culties completing the proof.

7.3 The Compactness Theorem Revisited

We are now in a position to present a semantic analogue to the Compactness

Theorem of First�Order Logic 2.4.5. The following corollary presents a way of

�constructing�2 a model for an in�nite set of sentences from the models of its

�nite subsets.

Corollary 7.3.1 Let � be a set of L�sentences such that, for any �nite � � �,
there is a model A� of �. Then, there is an ultraproduct C of the family
hA� ; � � �;� �nitei under some ultra�lter U such that C j= �.

Proof. We proceed in small steps that we deliberately do not develop in full
detail to leave room for the readers do do some work of their own. Note that

the index set S for the ultraproduct is chosen to be the set of all �nite subsets

of �, thus an element s 2 S is a set, and an element of an ultra�lter over S will
be a set of sets.

� First, we de�ne for � 2 � the set

S� :=fs 2 S ; � 2 sg :
2The quotes are used to express the author�s unease with calling a description based heavily

on the Axiom of Choice a �construction�.
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Thus, S� is the set of �nite subsets of � containing �. It follows that, for

�1; : : : ; �n 2 �,
f�1; : : : ; �ng2 S�1 \ : : : \ S�n :

� Now we collect all these S��s in the set F :=fS� ; � 2 �g. Then, F has

the f.i.p. (we proved this in Example 7.1.17) and is thus a subset of some

ultra�lter U over S.

� For � 2 � and s 2 S�, we have � 2 s and thus As j= �.

� From this we �nd S� �fs 2 S ; As j= �g2 U .

� Finally, by de�ning C :=
Q
s2S As =U , we see that for any � 2 �, C j= �.

7.4 The Upward Löwenheim�Skolem Theorem

Revisited

As was promised in Section 5.4, we will now give an alternative proof of the Up-

ward Löwenheim-Skolem Theorem, which makes use of the technique introduced

in this Chapter.

Please recall from Example 7.1.17, that for every setX; if S := fs � X; s �niteg
and, for x 2 X, Tx := fs 2 S;x 2 sg, then there is an ultra�lter over S extend-
ing fTx;x 2 Xg.

Theorem 7.4.1 Let L be a formal language and A 2 StrL be in�nite. Then,
for any � �k L k there is an L�structure B with B � A and cardB = �.

Proof. Let � := ThA, and let A0 be an L�structure with A0 � A and

cardA0 �k L k. (A0 exists by the Downward Löwenheim�Skolem Theorem

5.3.1.) Let C := fc�;� < �g be a set of distinct constant symbols not already
in L, and let L0 be L with these new constant symbols added. (From the

notation it should be clear that the set C has cardinality �). Moreover, let

� � SenL0 be given by

� := f:c�
:
= c� ;� < � < �g

and �0 := � [ �. Now de�ne S := fs � S; s �niteg.
Since any �nite subset of �0 can contain only �nitely many of the inequalities

in �, and these �nitely many inequalities can be satis�ed simply by choosing

di¤erent interpretations for the constant symbols involved (and arbitrary in-

terpretations for those constant symbols that are not in the inequalities), it
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follows that for any s 2 S, there is an L0�structure As, which has the same car-
rier as A but carries additional interpretations for the constant symbols which

appear in � but do not belong to L, such that As is a model for s. Setting
T� := fs 2 S;� 2 sg for � 2 �0 and letting B be the ultrapower

B :=
Y
s2S

As=U

where U is an ultra�lter over S extending the set F := fT�;� 2 �0g, we see
that B j= �0.
Indeed, if � 2 �0, then As j= � for all s 2 T�, and T� 2 U , hence

fs 2 S;As j= �g � T� 2 U

and, therefore, fs 2 S;As j= �g 2 U . From Theorem 7.2.11 we know that this

implies B j= �. Because � 2 �0 was arbitrary, B is a model for �0 and thus has
at least � elements (the interpretations of the new constant symbols; cf. Lemma

5.4.1). If B has too many elements (i.e. if cardB > �), we apply the Downward

Löwenheim�Skolem Theorem 5.3.1 to �nd B0 of the desired cardinality.

Exercise 7.4.2 In the proof of Theorem 7.4.1, explain how the L0�structures
As have to be de�ned (w.r.t. the interpretations of the new constant symbols).
Explain in more detail why they exist.



Chapter 8

The Semantical
Characterization of
Elementary Classes

Elementary classes were de�ned in De�nition 4.1.6 using syntactical notions. In

this chapter we are looking for a more direct characterization in the sense that

we are trying to avoid using any reference to theories.

8.1 Ultraproducts in Elementary Classes

A �rst step is to show that elementary classes are closed under ultraproducts,

or, to put it in the form of a negative result, that a class of L�structures that
is not closed under ultraproducts is never axiomatizable by a set of �rst�order

sentences.

Remember that we have already veri�ed that elementary classes are closed

under elementary equivalence. We now ask if the converse is also true, i.e. if

every class of L�structures which is closed under elementary equivalence is also
an elementary class. Looking at the following very basic example will not reveal

the answer directly, but it will give us a hint on where to look for a counter�

example.

Let K be the class of all �nite sets, which are considered as a class of L-
structures for the (unique!) formal language without any extra non�logical

symbols. According to the de�nition of elementary classes, one way of showing

that K is elementary would be to provide an axiomatization for K. Yet, as hard
as we try, we eventually fail to �nd an appropriate set of axioms. This in itself is

clearly not a proof of K not being elementary, but it reveals a basic asymmetry

95
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between being a model of a set � of sentences and not being a model of �. The

asymmetry we are hinting at is not really an asymmetry as long as we require �

to be �nite. For in�nite sets � however, K being the class of models for � means
that every structure in K satis�es every sentence in �, whereas for StrLrK,
a similar formulation would be that the structures in StrLrK are violating at
least one sentence in �.

Before drowning in abstract elaborations, we better present a model class

which exempli�es these observations:

Let Set�! be the class of in�nite sets. From First�Order Logic, we remember

that for any n 2 N there is a sentence �n which is satis�ed in a structure A
if and only if the universe of A has at least n elements. (This holds true

regardless of the language L under consideration; we may thus assume L to

be as above, a formal language without any non�logical symbols.) Being an

in�nite structure is then equivalent to being a model of the set � =f�n ; n 2 Ng,
whereby we see that Set�! is indeed an elementary class.1 The complement of

Set�! contains all �nite structures. Being a �nite structure means not satisfying

all the sentences in �, i.e. violating at least one of them. Hence, we are in the

rather uncomfortable position where one class of structures is well captured by

the notion of satisfaction of a set of sentences, whereas for the complementary

class, this feat does not work, since we lack the same elegant way of expression.

Satisfaction of a set � of sentences expresses the simultaneous satisfaction of

each sentence in the set (which can be viewed as an �in�nite conjunction�),

whereas the failure to satisfy � amounts to violating at least one sentence in �.

What we need is a formalization of failure which is on a par with the �in�nite

conjunction�. But this would have to be some sort of �in�nite disjunction�

which, unfortunately, we do not have.2

We will show later that, for �nite sets of sentences, the class of non�models

is equally well describable. This will lead us to the notion of basic�elementary

classes.

The �rst steps towards a semantical rephrasing of the termin �elementary

class� are the following observations. First, remember that every elementary

class is closed under elementary equivalence � (cf. Lemma 4.1.12). We also

mentioned that the converse is false, i.e. there are classes of structures which

are closed under elementary equivalence, yet they are not elementary. For the

time being, however, we are not in the position to give such an example.

1 It may be confusing that the notion of �in�nite�, i.e. not �nite, is the positive notion in
the context of this example, while �nite will be the negative counterpart. This stands in a
refreshing contrast to all the �nitist approaches to logic.

2This lack of symmetry between validity and its contrary is rooted already in the notion
of deducibility, where we deal only with deducible sentences, as for non�deducibility, we are
rather helpless before we are equipped with completeness�theorems. Also, compactness is
formulated only for the positive case.
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Our second observation is expressed in the following lemma.

Lemma 8.1.1 Every elementary class is closed under ultraproducts.

Proof. Let fAs ; s 2 Sg� Mod� and B :=
Q
s2S As =U be an ultraproduct

under the ultra�lter U over the index set S 6= ;. Then, for any � 2 �, we have
fs 2 S;As j= �g = S 2 U and thus B j= �. We conclude B 2 Mod�.
Thus, being closed under elementary equivalence and ultraproducts is a nec-

essary condition for a class being elementary. Is this condition su¢ cient?

Assume we would like to �nd a proof for this. Our next step would be to

show that a class K of L�structures that is closed under elementary equivalence
and ultraproducts is elementary, that is to say, it satis�es K = ModThK. From
4.1.4, we already know that K � ModThK, thus we �only�have to show that
ModThK � K. Let us assume that K is closed under elementary equivalence

and ultraproducts and let B 2 ModThK. How can we tell whether B 2 K or

not? Using assumptions we made on K, a good try would be to show that B is
elementary equivalent to the ultraproduct of a family of structures we already

know to be in K. But in order to do so, we have to know more about the

structures in ModThK.
The next lemma shows a few similarities to the semantical formulation of

compactness. It claims that �nite parts of theories of models in the smallest

elementary class extending K are already modeled in K.

Lemma 8.1.2 Let B 2 ModThK. Then, for any �nite � � ThB, there is
A� 2 K with A� j= �.

Proof. First, note that the assumption B 2 ModThK implies that ThK is

consistent and thus K 6= ;.
Now, � being �nite means that � = ; or � =f�1; : : : ; �ng� ThK for some

n 2 N; n � 1.
If � = ;, then any A 2 K is a model for �.
If � 6= ;, we proceed by reductio ad absurdum, i.e. we assume that for no A 2 K,
A j= �, and from this deduce a contradiction as follows:

If for no A 2 K, A j= �, then

for every A 2 K;A j= :(�1 ^ : : : ^ �n);

so

:(�1 ^ : : : ^ �n) 2 ThK

and thus, since B 2 ModThK,

B j= :(�1 ^ : : : ^ �n):
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On the other hand, since � � ThB and ThB is deductively closed, we have

B j= �1 ^ : : : ^ �n;

which is a contradiction.

From here we follow a route similar to the one described in the proof of the

semantical formulation of compactness and try to �nd an ultraproduct built

upon these models of �nite subsets of the theory of B, hoping that this ultra-
product is elementary equivalent to B.
Please recall the result from Example 7.1.17, which is indeed a proof for the

following lemma.

Lemma 8.1.3 Let � � SenL, S :=f� � � ; � �niteg. For � 2 �, let

T� :=f� 2 S ; � 2 �g. Then, there is an ultra�lter U �fT� ; � 2 �g.

Proof. Follows immediately from Example 7.1.17.

Now we are ready to prove the following lemma.

Lemma 8.1.4 If K � StrL is closed under elementary equivalence and ultra-
products, then ModThK � K.

Proof. Let B 2 ModThK. According to 8.1.2 we �nd that for any �nite

� � ThB, there is an A� 2 K with A j= �.
Now, let S :=f� � ThB ; � �niteg, for � 2 ThB let T� :=f� 2 S ; � 2 �g
and �nally F :=fT� ; � 2 ThBg.
Using 8.1.1 (and the Axiom of Choice!) we obtain a family hA� ; � 2 Si such
that A� j= � for all � 2 S, and by Lemma 8.1.3, we know that there is an

ultra�lter U over S whith F � U .
Thus, we set C :=

Q
�2S A� =U to be the ultraproduct of hA� ; � 2 Si under

U .
Take any � 2 ThB. Then, for � 2 S with � 2 � we have A� j= �, so

A� j= � for all � 2 T�;

whence T� �f� 2 S ; A� j= �g, and since T� 2 U , we conclude that

f� 2 S ; A� j= �g2 U

und thus C j= �. Thus, ThB � Th C, and by Corollary 6.1.12, we conclude that
B � C.
Thus, we have found an ultraproduct C of structures A� 2 K which is ele-

mentary equivalent to B. However, since K is closed under ultraproducts and

elementary equivalence, we conclude that B 2 K.
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The main result of this section simply follows by putting everything together.

Theorem 8.1.5 (Elementary Classes) ForK � StrL, the following are equiv-
alent:

(i) K is an elementary class.

(ii) K is closed under elementary equivalence and under ultraproducts.

Proof. If K is an elementary class, then, by Lemma 4.1.12, K is closed under

elementary equivalence and, by Lemma 8.1.1, it is also closed under ultraprod-

ucts.

If K is closed under elementary equivalence and ultraproducts, then, by 8.1.4,

ModThK � K and, by 4.1.4, K � ModThK, thus K = ModThK.
This is as good a semantic characterization of elementary classes as we can

�nd with the means provided in this module. Actually, to entirely discard all

syntactic notions in the characterization of elementary classes we must �nd a

semantic description of elementary equivalence. Below we will state a result

(without proof) which provides the necessary and su¢ cient conditions for a

class to be elementary in purely semantical terms relying on the notions of

ultraproduct and isomorphism. For the time being, we have to make do with

ultraproducts and elementary equivalence, with the latter still �rmly rooted in

syntax.

Notation 8.1.6 For a class K of L�structures, let

K�n :=fA 2 K ; jAj is �niteg;

and consequently

Kinf :=fA 2 K ; jAj is in�niteg :

Example 8.1.7 Let L be the trivial language containing no non�logical sym-
bols3 , so L�structures are sets with no extra relations, functions or constants.
For n 2 N let A :=f0; : : : ; ng, so every An is an L�structure with exactly n+ 1
elements. Let U be an ultra�lter over N and C :=

Q
n2NAn =U .

For each n 2 N let �n be an L�sentence holding in an L�structure A if and only
if jAj has exactly n+ 1 elements. (Exercise: Find examples of such sentences!)
Then, for each n 2 N,

fs 2 N ; As j= �ng= fng 62 U
3Remember that the non�logical symbols are given by the index sets I; J and K and the

arity�functions � and � which characterize L. If a formal language L contains no non�logical
symbols, these index sets are all empty and consequently � = � = ; as well. This justi�es the
formulation �the trivial language� instead of �a trivial language�.
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and thus C 6j= �n. It follows that jCj is in�nite (since jCj is obviously not empty).
Using these observations we can conclude that StrL�n is not closed under ul-
traproducts and thus not elementary.

Exercise 8.1.8 Analyzing the above argumentation, �nd a way to show that
for any language L and for any K � StrL one �nds that:
If for any n 2 N there is a A 2 K�n with card jAj � n, then K�n is not

elementary.

Please note that by constructing an in�nite model as an ultraproduct of a

family of structures whose cardinalities are �nite but without upper bound in

N we implicitely proved that

there is no set of sentences � such that (1) � has only �nite models

but (2) there is no upper bound for the cardinalities of models of �.

Also, by using the upward direction of the Löwenheim�Skolem Theorems,

Theorem 5.4.3, we may conclude that

if there is no �nite upper bound for the sizes of �nite structures in

some elementary class, then there is no upper bound at all to the

cardinalities of the structures;

i.e.

if, in a given elementary class K, for every n 2 N; there is a �nite
structure A 2 K with card jAj � n, then there is, for any cardinal

�, a B 2 K with jBj � �.

Example 8.1.9 Let L = f+;�; �; 0; 1g be the language of rings and �elds and
let F be the class of �elds with characteristics di¤erent from 0. Then, F is not
elementary, as shows the following argument (which exhibits several analogies

to the above example):

First, we remember that the characteristic of a �eld is either a prime number

or 0, that Zp is a �nite �eld for p 2 N prime and that clearly the characteristic
of Zp is p.
Then, we set S :=fp 2 N ; p primeg. S is in�nite and thus there is a free ultra-
�lter U over S containing every co��nite subset of S. Now, let C :=

Q
p2S Zp =U .

Since being a �eld is expressible in terms of (�nitely many) L�sentences, C is a
�eld by ×os�s Theorem. Yet, by the very same theorem, the characteristic of C
cannot be a prime and thus must be 0.
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Exercise 8.1.10 Work out the details to Example 8.1.9.4

We conclude that

The class of �elds having characteristic di¤erent from 0 is not closed

under ultraproducts and thus not elementary.

If we recall that being an elementary class means being axiomatizable by a

set of L�sentences, we see that the above examples provide classes of models
which are not fully describable in First�Order Logic.

Example 8.1.11
Let L be the language equipped with a binary function symbol +, a binary

relation symbol � and the constant symbols 0 and 1. Consider the L-structure
N := hN;+;�; 0; 1i with the obvious interpretations of the symbols and let
K := ModThN. Then, K is elementary by de�nition and thus closed under

ultraproducts. However, as we saw in 7.2.7, the ultrapower NN=U under a free
ultra�lter U does not have the Archimedean Property of N and has elements

exhibiting the behaviour of �in�niteness�. Yet, clearly NN=U is a model of

ThN. This is what is sometimes expressed by the following statement:
Every �rst�order axiomatization5 of N has non�standard models.

To sum up, so far we used ultraproducts in two ways: One was to show that

some classes are not elementary, and the other was to show that some elementary

classes contain non-standard structures. A third application of ultraproducts

now follows. Ultraproducts can be used to characterize the complement class of

an elementary class.

8.2 Ultraproducts in Basic�Elementary Classes

Basic�elementary classes provide (partial) answers to quite a few questions you

may or may not have asked yourself.

� Since an elementary class is just the class of models of some arbitrary set of
sentences, what happens if we restrict ourselves to �nite sets of sentences?

4Note that for a given p �being of characteristic p� is expressible as an L�sentence. Also,
note that in order to express �having characteristic 0�in �rst�order logic, we need an in�nite
set of L�sentences, but this we will only be able to proof once we introduce the notion of
basic�elementary classes.

5Another �detail�should be mentioned here. Clearly such an axiomatization of N (by �rst�
order sentences) consists of in�nitely many sentences. As Gödel proved in the early 1930s,
such an axiomatization is inaccessible to a systematic approach in the sense that it is never
recursive. So, although we very much believe that there are axiomatizations (e.g. ThN itself),
we will never fully grasp the form of such an axiomatization (provided Church was right when
he claimed that �recursive� and �computable� are one and the same � but that is another
story and part of the theory of recursive functions).
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� What do maximally proper elementary classes look like?

� An elementary class K is a class of L�structures axiomatized by a set of
L�sentences. Is there an equally elegant description for StrLrK?

At the end of this section the reader will hopefully have found answers to

these questions. As it turns out the best way to access these problems is by

starting with the �rst question.

De�nition 8.2.1 A class K � StrL is called a basic�elementary class if
K = Modf�g for some L�sentence �.

Basic�elementary classes are obviously elementary. Moreover, the restriction

that K be axiomatized by a single sentence can be weakened, as we can see in

the following Lemma.

Lemma 8.2.2 K � StrL is basic�elementary i¤ K = Mod� for a �nite � �
SenL .

Proof. This is a simple consequence of

Mod f�1; : : : ; �ng= Modf�1 ^ : : : ^ �ng:

Example 8.2.3 There are a lot of examples for this in �everyday math experi-
ence�, e.g. the class of �elds, rings, groups etc. since they are each characterized

by a �nite set of axioms.

Clearly, ; and StrL are basic�elementary as well. (As an exercise: Can you
tell why?)

Now we want to take a closer look at the complementary classes of basic�

elementary classes.

Lemma 8.2.4 If K � StrL is basic�elementary, then so is StrLrK.

Proof. Let K = Modf�g, � an L�sentence. Then, for any A 2 StrL,

A 2 StrLrK i¤ A 62 K

i¤ A 6j= �

i¤ A j= :�

i¤ A 2 Modf:�g:

Thus, StrLrK is basic�elementary.
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So, if a class of L�structures is axiomatized by a single sentence, its comple-
ment class is axiomatized by the negation of this sentence. Using �nite set of

sentences instead of a singleton set, this last sentence generalizes to the following

statement:

If a class of L�structures is axiomatized by a �nite set of sentences,
then the complementary class is axiomatized by ... (Exercise: Com-

plete this statement!)

Returning to merely elementary classes we note that basic�elementary classes

are elementary classes with elementary complement�classes. Does the converse

hold as well? Theorem 8.2.5 con�rms this.

Theorem 8.2.5 (Basic�Elementary Classes)
K � StrL is a basic�elementary class i¤ both K and StrLrK are elementary

classes.

Proof. By Lemma 8.2.4, if K is basic�elementary, then so is StrLrK. Since
basic�elementary classes are elementary, K and StrL are both elementary.
So it remains to prove the converse.

Assume K and K := StrLrK are both elementary classes. If K = ; or
K = StrL, then K is basic�elementary as we have seen in the examples.
So, without loss of generality, assume K 6= ; and StrLrK 6= ;. Let � and

� be the axiomatizations of K and StrLrK, respectively, i.e. K = Mod� and
K = Mod�.
Since ; = Mod� \Mod� = Mod(� [ �), completeness implies that � [ �

is inconsistent. By applying the Compactness Theorem 2.4.5 we �nd a �nite

�0 � � [ � which is already inconsistent.
Now let � := �0 r �.
Since �0 is inconsistent, �0 � � would imply � inconsistent and thus K =

Mod� = ;. So we conclude � 6= ;, � =f�1; : : : ; �ng.
We claim that A 2 Mod� i¤ A 6j= �.
For su¢ ciency, let A 2 Mod� = K and assume A j= �. Then, A j= � [�,

thus A 2 Mod(� [�) � Mod�0 = ;, a contradiction.
Conversely assume A 6j= �. Then, A 6j= �, since � � �. But this means

A 62 Mod�, so A 2 StrLrMod� = Mod�.
Thus, we conclude that K = StrLrMod� is the complement of a basic�

elementary class, thus, by Lemma 8.2.4, K is basic�elementary.
Hence, if we were really able to provide a purely semantical description of

elementary classes (which we are not, since we have not discarded �elementary

equivalence�yet), we could equally well describe �nitely axiomatizable classes

of structures by semantical notions. However, the above will do for the moment.
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Σ Σ
Σ0

∆

Without mentioning elementary classes, we can formulate the result from

Theorem 8.2.5 in the following corollary.

Corollary 8.2.6 K � StrL is a basic�elementary class i¤ both K and StrLrK
are both

� closed under elementary equivalence � and

� closed under ultraproducts.

In the proof of Theorem 8.2.5 (Basic�Elementary Classes) we implicitely

applied a direct consequence of the Compactness Theorem 2.4.5 which deserves

being stated in its own right.

Lemma 8.2.7 (The Covering�Lemma:)
Assume �;� � SenL with

Mod� �
[
�2�

Mod�:

(
S
�2�Mod� is a covering of Mod�.) Then there are �1; : : : ; �n 2 � such

that

Mod� � Mod�1 [ : : : [Mod�n :

Exercise 8.2.8 Prove the Covering Lemma.
(Hint: Note that Mod� �

S
�2�Mod� i¤Mod� \

T
�2�Mod:� = ;.)

Example 8.2.9 For L the trivial language, we saw in Example 8.1.7 that

StrL�n is not closed under ultraproducts and thus is not elementary. So

StrLinf = StrLrStrL�n is clearly not basic�elementary. Still, StrLinf =
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StrLrStrL�n is elementary, as you will have no trouble showing by �nding an
appropriate set of sentences � which is satis�ed in a L�structure if and only if
the structure has an in�nite universe. (Exercise: Do so!)

Thus we observe for the trivial language L that the class of �nite L�structures
cannot be axiomatized at all. The class of in�nite L�structures can be axioma-
tized, but not by a �nite set of L�sentences.
Please note, we did not claim that there are no theories with only �nite models.

What we did say is that given a set of sentences whose model�class contains

exclusively �nite models, there is an n 2 N such that every model in this class
has at most n elements. (Exercise: We are quite sure you will have no trouble

�nding such a set of sentences which has only �nite models.)

Example 8.2.10 For L = f+;�; �; 0; 1g, the language of rings and �elds, we
saw in Example 8.1.9 that the class F of �elds with characteristic di¤erent from
0 is not elementary. Again, we can easily con�rm that StrLrF is elementary.
So we conclude that although e.g. the class of all �elds is �nitely axiomatizable

the subclass of �elds with characteristic 0 is not �nitely axiomatizable.

We now turn our attention to the question about maximally proper elemen-

tary classes. The �rst result is obvious.

Lemma 8.2.11 Any elementary class is the (class�)intersection of basic�elementary
classes.

Proof. This is a simple consequence of

Mod� =
\
fMod' ; ' 2 �g :

From this we conclude the following characterization of basic�elementary

classes and provide a partial answer to the second of the above questions: "What

do maximally proper elementary classes look like?"

Corollary 8.2.12 If K � StrL is an elementary class which is maximal among
the proper, elementary subclasses of StrL (i.e. K0 elementary and K � K0 6=
StrL implies K = K0), then K is basic�elementary.

Proof. We prove the contraposition. IfK is elementary but not basic�elementary,
then ; 6= K 6= StrL, so ThK 6� ThStrL, since otherwise K = ModThK �
ModThStrL = StrL.
Now take any � 2 ThKr ThStrL. Then,

K = ModThK � Mod� (as f�g � ThK):
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Moreover, Mod� 6= StrL since otherwise � 2 ThMod� = ThStrL, which
contradicts the choice of �. Thus, Mod� is a basic�elementary class K0 with
K ( K0 ( StrL.

Remark 8.2.13 Generally the converse of Corollary 8.2.12 is not true, as the
following example shows.

Let L be the language with one unary function�symbol s and one constant�
symbol 0. For n 2 N, n � 1, let tn 2 TmL be de�ned by

t1 :� s(0) and tn+1 :� s(tn):

Let � :=f�n ; n 2 Ng where �n :� :tn
:
= 0 and let � :� 8x:s(x) :

= 0. For

n 2 N let An be the L�structure with universe Zn and sAn(m) := m + 1.

(This justi�es the choice of s for the function symbol as an abbreviation of

�successor�.) Let A be the L�structure with universe fk 2 Z ; k � �1g and
again the successor function as the interpretation of s. Then, we claim that

1. � ` �, thus Mod� � Mod�;

2. there is an ultraproduct of hAn ; n 2 Ni which is a model for � while each
An is not;

3. Mod� is not basic�elementary.

Thus Mod� is a basic�elementary class which is properly contained in the

elementary but not basic�elementary class Mod�.

Exercise 8.2.14 Fill in the details of the proofs of the claims stated in the
above remark.

We have seen that the basic�elementary classes are exactly those elemen-

tary classes whose complement�class is elementary as well. Moreover, maximal

elementary classes are basic�elementary.

Now we draw one more conclusion by combining our knowledge about basic�

elementary classes with the Downward Löwenheim�Skolem Theorem 5.3.1:

Theorem 8.2.15 In every non�empty basic�elementary class there is a count-
able structure.

Proof. (Sketchy) If K is basic�elementary, then K = Mod� for some L�
sentence �: Since sentences are �nite concepts, only �nitely many non�logical

symbols from L occur in �. Let L0 be the sub�language of L comprising exactly
these symbols. Then � is an L0�sentence as well, and clearly every L�structure
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A may be easily made into an L0�structure simply by forgetting the interpre-
tations of the symbols from L which do not belong to L0:Conversely, every
L0�structure can be viewed as an L�structure if we add arbitrary interpreta-
tions for the non�logical symbols, which does not a¤ect the satisfaction of � or

the cardinality of the structure: Moreover, every L�structure is a model of � i¤
it is so as an L0�structure. From the Downward Löwenheim�Skolem Theorem

5.3.1 we know that there is a countable L0�structure which is a model for �,
but this model can be extended to a model in K:

8.3 Discarding �
Our original task of expressing closure properties of semantical classes without

using syntactical concepts is not yet completely accomplished since we make

extensive use of elementary equivalence. In this section, we �nally want to show

a way of using semantical concepts exclusively for working with elementary

classes. However, we will not be able to give the proof of the main result, since

this lies beyond the scope of this lecture.

Still, half the work is already done, since we showed in Theorem 4.4.6 that

for any two L�structures A and B, if A and B are isomorphic, then they are
elementary equivalent:

if A �= B; then A � B:

The following main result we are now going to state should give you an idea

of the importance of ultraproducts in model theory.

Theorem 8.3.1 (Elementary Equivalence via Isomorphism) Let A and

B be two L�structures. Then the following are equivalent:

(i) A � B.

(ii) For some index sets I and J and ultra�lters U over I and V over J ,

AI=U�=BJ=V.

This means that two structures are elementary equivalent i¤ they have iso-

morphic ultrapowers.

Proof. To show that (ii) implies (i) is not di¢ cult and is thus left as an

exercise. The converse, however, is rather complex and the reader is referred to

the literature.

We use Theorem 8.3.1 to �nally prove the following corollary, the objective

of our endeavour.

Corollary 8.3.2 For K � StrL, the following statements are equivalent
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(i) K is an elementary class;

(ii) K is closed under isomorphisms and ultraproducts, and StrLrK is closed
under ultrapowers.

Proof. Both directions rely on Theorem 8.1.5 by which K is elementary i¤ K
is closed under elementary equivalence and ultraproducts.

(i) implies (ii): If K is an elementary class, then K is closed under ultraprod-
ucts (by Theorem 8.1.5). Moreover, if B �= A 2 K, then B � A by Theorem

4.4.6, so B 2 K (by Theorem 8.1.5). Thus, K is closed under isomorphisms.

Moreover, if AI=U2 K for some ultrapower AI=U of A, then A 2 K, since
AI=U�A and K is closed under �, so contraposition shows AI=U 62 K whenever
A 62 K, i.e. StrLrK is closed under ultrapowers.
(ii) implies (i): Assume K is closed under isomorphisms and ultraproducts,

and StrLrK is closed under ultrapowers. By Theorem 8.1.5, all that remains to
be shown is that K is closed under elementary equivalence. Assume B � A 2 K.
By Theorem 8.3.1 there are isomorphic ultrapowers AI=U of A and BJ=V of B.
AI=U2 K by the premise, so BJ=V2 K since K is closed under �= by the premise
as well. Now, if B 62 K, then B 2 StrLrK, but then also BJ=V2 StrLrK by

the premise. This is a contradiction. We conclude B 2 K, i.e. K is elementary

according to Theorem 8.1.5.

For basic�elementary classes, the criterion is even simpler.

Corollary 8.3.3 For K � StrL, the following statements are equivalent

(i) K is a basic�elementary class.

(ii) Both K and StrLrK are closed under isomorphisms and ultraproducts.

Proof. As an exercise combine Corollary 8.3.2 and Theorem 8.2.5 to prove the

claim.

We �nd that (basic) elementary classes can be described using only the

semantical notions of ultraproducts, ultrapowers and isomorphisms.



Chapter 9

Universal Algebra

The word �algebra� carries di¤erent meanings in mathematics: First of all, it

stands for one of the large �elds into which mathematics is commonly divided, at

the same level as geometry or analysis. Then, it also names a very speci�c sort

of mathematical structure, namely vector spaces with a multiplication de�ned

for their vectors; a prime example is the set of complex numbers, thought of as

a vector space over the reals.

Starting with this chapter, we will use the term �algebra�for a concept sit-

uated at an intermediate level of generality. We will use it for a set equipped

with some speci�ed operations. Since Model Theory is the main subject of this

lecture, we shall root the notion of a (universal) algebra within the realm of

structures (and languages). Later we will gradually abandon the Model Theo-

retic approach and treat algebras as a fundamental notion.

9.1 Algebras

Looking at structures for a formal language the way we did, we roughly had four

components characterizing a structure: Its universe, its constants, its functions

and its relations. The exertions with the Löwenheim�Skolem Theorems showed

that relations play an entirely di¤erent role than the rest of the semantical

components making up a structure. To be the universe of a substructure a

subset has to comply to certain closure�conditions concerning the constants and

functions, the relations however are simply imposed on the smaller structure by

restriction. This aspect is even more emphasized when we deal with structures

lacking any relations. These are called (universal) algebras. At �rst glance,

the de�nition looks quite di¤erent from the de�nition of a structure, but, as we

will see, these divergences are marginal and cannot really obscure the common

origin of the two concepts.

109
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De�nition 9.1.1 A type t consists of a family t =hrs ; s 2 Si of nonnegative
integers rs, together with a family (over the same index set S) hfs ; s 2 Si of
operation symbols. rs is the arity ar(fs) of fs.

There is nothing remarkable about this de�nition, except for the fact that

we did not exclude S = ;, nor rs = 0. The signi�cance of this will become clear
after the next de�nition.

De�nition 9.1.2 If t =hrs ; s 2 Si is a type, then a (universal) algebra
A = hA; fAs is2S of type t consists of a set A, the universe of A, and a
family hfAs ; s 2 Si of functions fAs : Ars �! A, the so called fundamental
operations of A. Algebras of the same type are called similar.

Since we are concerned exclusively with universal algebras in this module,

the attribute �universal� will be dropped in most cases. The same goes for

�fundamental�as far the operations ofA are concerned. Moreover, if the algebra

A is clear from the context, the operation symbol fi and the operation fAi will

be used interchangeably.

Many of the popular examples presented in this chapter will be of �nitary

character, that is, the index set S of the type (and thus the type itself) will be

�nite. If this is the case, say t :=hr1; : : : ; rni, we will denote algebras A of type

t in the form A = hA; fA1 ; : : : ; fAn i. Some of our key concerns for this lecture
are examples and case studies, and these examples typically deal with algebras

having very few fundamental operations.

In the light of the introductory remarks above, we see that the type �xes a

formal language L such that an algebra A of this type is nothing less than an

L�structure. This justi�es adopting many of the conventions and notations for
structures to algebra. We will, for example, call an algebra �nite if and only if

its universe is �nite. Denotationally, we distinguish algebras from structures in

that we denote algebras by boldface roman letters A, B, whereas structures are

denoted by calligraphic letters A, B.
Of course, languages L for algebras are devoid of relation symbols. Con-

sequently, we will call such a language a functional language. Thus, given
any functional language L we �nd that all L�structures are algebras. On the
other hand, any type gives rise to some functional language. This language,

although not uniquely determined, is still �xed in the sense that there is a strict

correspondence of function�and constant�symbols and the arities involved of

any two such languages. Consequently, we will address such a language as the

underlying language of a type or of an algebra or of a class of algebras of
common type.
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The special role of nullary operations (i.e. operations having arity 0) will
become clear in the following remarks.

Remark 9.1.3 The de�nition just given looks very general � which is quite

�tting for the notion of a universal algebra. However, it is the product of several

deliberate choices:

1. By not excluding n = 0, we allow a set A with no operations at all to be

an algebra.

2. The set Amay be empty according to our de�nition. This is handy in most

cases, but may require some care as exhibited below and clearly stands in

contrast to the de�nition of L�structures.

3. By allowing non�negative integers as arities, we include the possibility

ri = 0 for some i. What is an operation of arity 0? In Set Theory , Ari is

constructed as the set of all maps from f0; : : : ; ri � 1g into A. If ri = 0,
this becomes the set of all maps from ; into A. Thinking of maps as sets
of ordered pairs, there is exactly one such map, namely ; (not depending
on A being empty or not!); in other words. A0 = f;g.

Consequently, an operation of arity 0 is a map f : f;g �! A. Now if

A 6= ;, f is completely determined by f(;) 2 A. Summing up, operations
of arity 0 may be identi�ed with elements of A, called constants or des-
ignated elements in this context � provided that A is not empty. If

A = ;, there exist no maps from f;g into A, so an empty algebra cannot
have any nullary operations. (In fact, in an empty algebra only very few

operations are possible. Which one?)

4. Restricting arities to integers excludes operations taking in�nitely many

�inputs�. This restriction to so-called �nitary operations is standard
practice and does not a¤ect the topics we will discuss in this module in

any way.

5. Operations as de�ned in 9.1.2 are de�ned for every tuple of elements of
A (of the correct length). This excludes so-called partial algebras where
maps fs : D �! A are admissible as operations for arbitrary subsets D �
Ars . The theory of partial algebras is well beyond the scope of this lecture;

the interested reader is referred to further literature.

We will now consider a preliminary batch of examples in order to sketch the

scope of De�nition 9.1.2. With one notable exception, most of the algebraic

structures encountered in any undergraduate curriculum �t neatly in the frame
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of De�nition 9.1.2. In familiar situations we use the conventional in�x notation

in place of both fs and fAs .

Example 9.1.4 1. Any group G is an algebra G of type (2; 1; 0) with G =

hG; �;�1 ; ei, � denoting multiplication, �1 inverses and e the neutral ele-
ment.

2. Another algebra S of type (2; 1; 0) is obtained by choosing the power set

P (X) of some �xed set X as universe S, set intersection \ as operation
of arity 2, set complement c with respect to X as operation of arity 1 and

; as constant, thus S = hS;\;c ; ;i.

Comparing these algebras with groups, we see that similar algebras need

not be very similar in the nontechnical sense of the word.

3. Among all algebras of type (2; 1; 0), groups may be characterized by the

familiar group laws

(A) (x � y) � z = x � (y � z)
(N) x � e = e � x = x

(I) x � x�1 = x�1 � x = e

requiring that � be associative, that e acts as neutral element and x�1 as
inverse element for x with respect to �. Such �laws�specify a subclass of a
given class of algebras of a given type, and they present an axiomatization

of this class as a (basic�)elementary class (cf. Section ??).

4. Any group G may also be viewed as an algebra of type (3) with a ternary

operation m de�ned on G by m(x; y; z) := x � y�1 � z where � of course
denotes the original multiplication operation which comes with G. The

question arises naturally whether one may �nd group laws formulated

exclusively in terms of m which characterize groups among all algebras of

type (3). (Exercise: Answer this question.)

5. Any (unitary) ringR = hR; +;�; �; 0; 1i is an algebraR of type (2; 1; 2; 0; 0),
where + denotes addition, � additive inverses, � multiplication, 0 the ad-
ditive and 1 the multiplicative neutral element.

6. A combinatory algebra is an algebra X = hX; �;K;Si of type (2; 0; 0) sat-
isfying (K � x) � y = y and ((S � x) � y) � z = (x � z) � (y � z). Since the binary
operation � in combinatory algebras need not be associative nor commu-
tative, we will use such algebras mainly to produce unfamiliar examples

or counterexamples. They originate from logic and provide a more alge-

braic counterpart to ��calculus. (For more on the subject of combinatory

algebras and ��calculus the reader is referred to the literature.)
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7. The one familiar algebraic structure missing from our list of examples is

that of a vector space. While vector addition is an ordinary binary oper-

ation on V , everything becomes a little less �nitary than in the above ex-

amples if the vector space we try to present as an algebra is a vector space

over an in�nite �eld F . Then we need a unary operation fx : V �! V

given by fx(v) := xv , for any x 2 F to express scalar multiplication of

the vector v 2 V by the scalar x 2 F .

The next example is rather special, �rst, in the sense that it mixes di¤erent

topics (syntax and semantics, algebras and languages), and second, in that it

presents a rather elegant way of demonstrating an algebraic access to logic and

model theory.

Example 9.1.5 If L is a formal language, we get an algebra TL by choosing
as the universe the set TmL of all L�terms, and as operations fTj the process

of building a composite term fj(t1; : : : ; t�(j)) from the terms t1; : : : ; t�(j). So

fTj (t1; : : : ; t�(j)) := fj(t1; : : : ; t�(j)), and the resulting algebra could (misusing

the notation only very slightly) be written as

T := hTmL; fj ; ckij2J;k2K :

In the same vein, consider the set FmlL of L�formulae. Again, we could look
at the process of composing formulae to more complex ones as a fundamental

operation on FmlL, thus regarding FmlL as an algebra F. F would then, at
least for the approach to formal languages chosen in this lecture, have one binary

operation (^), one unary operation (:) and countably in�nite unary operations
(8vn for all n 2 N).
The approach to algebras treated in these two examples relates closely to the

term�structures for building syntactical models. Consequently, algebras thus

de�ned are often called term�algebras and they share an important universal
property: They are freely generated by some set of generators. Some more

details on this subject are to follow in Section ??.

9.2 Homomorphisms

Homomorphisms, isomorphisms and related notions were already introduced in

the context of structures in chapter 4.4. We are now in the somewhat easier

situation where we can disregard relations, which may or may not be preserved

by a potential homomorphism. De�nition 4.4.1 thus simpli�es to the following

De�nition:
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De�nition 9.2.1 Let A = hA; fAs is2S , B = hB; fBs is2S be two similar alge-
bras. A map � : A �! B is a homomorphism from A into B i¤ for every

s 2 S and every rs-tuple a1; : : : ; ars of elements of A

�(fAs (a1; : : : ; ars)) = fBs (�(a1); : : : ; �(ars)):

A is called the source (or domain) and B the target (or co�domain) of �. If
� is a surjective mapping, B is called a homomorphic image of A. We write
Hom(A;B) for the set of all homomorphisms from A into B.

In particular, a constant of A will be mapped to the corresponding constant

of B under any homomorphism. (Exercise: Write a detailed proof of this claim,
using 9.1.3.) Recalling the notation �rs from Section 4.4, the above situation

(at least for the case rs > 0) can be written as

� � fAs = fBs � (�rs):

Ars Brs

A B

-

-

6 6

�rs

�

fAs fBs

The next Proposition is simply a reformulation of Lemma 4.4.2 in the context

of algebras.

Proposition 9.2.2 If A and B are two algebras of the same type with under-

lying language L, then � : A �! B is a homomorphism i¤ for any L�term t

and any valuation h into A, �(tA[h]) = tB[� � h].

If L is a formal language and t(x1; : : : ; xn) an L�term containing exactly the
free variables x1; : : : ; xn, then, for any L�structure, t uniquely determines an
n�ary function tA : jAjn �! jAj by

tA(a1; : : : ; an) := tA[h
�
x1
a1

�
: : :
�
xn
an

�
]

for any a1; : : : ; an 2 jAj, h an arbitrary valuation into A. An arbitrary function
f : jAjn �! jAj which is (as a set of ordered pairs) equal to a function stemming
from a term in the above sense is called a term�function (on A). Thus, the
above proposition says that a map is a homomorphism between algebras if and

only if it is compatible with all the term�functions.

For the sake of completeness it must be mentioned that we could, with some

di¢ culty, have de�ned term�functions inductively. However, we feel that the

meaning of the above is clear.
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From De�nition 4.4.3 and the remarks thereafter, we recall the special kinds

of homomorphisms and their properties. It follows that in the context of al-

gebras (i.e. in the absence of relations) a homomorphism � : A �! B is an

isomorphism if and only if � is injective and surjective (i.e., bijective). As for

L�structures in general, isomorphisms delimit the degree of resolution adopted
by Universal Algebra in studying its objects. Accordingly, a property of algebras

is called an algebraic property if it is preserved under any isomorphism. As
an example, the property of being a commutative group is algebraic while the

property of being a group of permutations of f1; : : : ; ng is not, since any group
of permutations of f1; : : : ; ng is isomorphic to some group of permutations of
any set with n elements.

By de�nition, isomorphic algebras are always similar. The converse is not

true. (Exercise: Find a simple example of two similar non�isomorphic algebras.)

Some more specializations deserve mentioning:

A homomorphism from A into itself is called an endomorphism of A, and

an isomorphism from A onto itself an automorphism of A. The set of all

endomorphisms End(A) of A is the universe of the algebra

End(A) = hEnd(A); �; idAi

of type (2; 0) where � denotes composition of maps as usual and idA is of course
the identity map of A. (For those among the readers with some algebraic back-

ground: End(A) is a monoid.) Similarly, the set Aut(A) of all automorphisms

of A is the universe of the algebra

Aut(A) = hAut(A); �;�1; idAi

of type (2; 1; 0) where �1 denotes inverses of maps (Aut(A) is a group).

Example 9.2.3

1. As an exercise: Verify for groups, rings and vector spaces that the respec-

tive de�nitions of homomorphisms match with the de�nition just given in

this section.

2. Regarding the term�algebra for some formal language L, the reader is
invited to verify that any valuation h into an L�structure A determines

an L�homomorphism �h : TL �! A by �h(t) := tA[h]. Also verify that

if the language is functional (i.e. if it contains no relation�symbols) we

are actually facing homomorphisms in the sense of the above de�nition.
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9.3 Subuniverses and Subalgebras

Given a group G = hG; �;�1 ; ei, a subgroup of G is, roughly said, any subset of

G which is closed under the operations � and �1 and contains e. Again, there

is a straightforward generalization to the setting of arbitrary algebras, as we

have already seen for substructures. Since we do not need to worry about rela-

tions (remember that they were de�ned on substructures simply as restrictions,

without any further constraints), the de�nition of a subalgebra as a substruc-

ture of an algebra is straightforward. Recall the de�nition of subuniverse from

De�nition ??.

De�nition 9.3.1 LetA = hA; fAs is2S be an algebra. An algebraB = hB; fBs is2S
of the same type as A is a subalgebra of A i¤ B is a subuniverse of A and

fBs is the restriction to B of fAs for all s 2 S. Given any subuniverse B � A,

the canonical subalgebra living on B will be denoted by B. We write SubA

for the collection of all subuniverses of A.

Example 9.3.2

1. Consider an arbitrary group G with operations � and �1, and neutral

element e. Considered as an algebra G of type (2; 1; 0), G = hG; �;�1 ; ei,
the subalgebras of G are just the ordinary subgroups of G. If G = hG; �i,
the subuniverses are the subsets closed under �, including ;. Viewed as
an algebra of type (3) with the operation m as de�ned in 9.1.4.4, the

subalgebras are the co�sets1 (left or right) of any ordinary subgroup of G

and ;, endowed with the restriction of m as its only operation. (Exercise:

Prove this statement.)

2. A subalgebra of the term�algebraTL as de�ned in 9.1.5 can easily be found

by restriction to closed terms, i.e. the terms containing no variables.

We list some straightforward generalizations of facts well-known from the

group, ring or vector space setting. The proof is left as an exercise.

Proposition 9.3.3 Let A and B be algebras and � : A �! B any homomor-

phism.

1. If S � A is a subuniverse of A, then �[S] =f�(s) ; s 2 Sg is a subuniverse
of B. Extended notation established in 9.3.1, the corresponding subalge-

bra of B will be written �[S]. �[S] is clearly a homomorphic image of S

in the sense of 9.2.1.
1 If S is a subset of a group G, then a left co�set of S in G is a set of the form g �

S :=fg � s ; s 2 Sg for some g 2 G. Similarly, a right co�set of S in G is of the form
S � g :=fs � g ; s 2 Sg.
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2. If T � B is a subuniverse of B, then ��1[T ] = fa 2 A : h(a) 2 Tg is a
subuniverse of A. Again, ��1[T] stands for the corresponding subalgebra
of A.

3. If fSk ; k 2 Kg is a chain2 of subuniverses of A, then their set unionS
k2K Sk is a subuniverse of A. More generally, if D =fSk ; k 2 Kg is

a set of subuniverses of A directed by � (i.e. for Sk1 ; Sk2 2 D there is

always an S 2 D such that Sk1 [ Sk2 � S), then
S
D is a subuniverse of

A.

If hSk ; k 2 Ki is any family of subuniverses of an algebra A, then the set
intersection

T
k2K Sk is a subuniverse of A. This even applies to the empty

family of subuniverses whose intersection is A itself. We conclude with the

following proposition.

Proposition 9.3.4 SubA is a closure system and thus a complete lattice (un-

der �).

The tricky part is to be more speci�c about the supremum of a family of

subuniverses. Examples where suprema do not coincide with the set union

are easily found (Exercise!), consequently we have to ask ourselves how these

suprema are to be de�ned. From Section ?? we know that for any X � A

there is a smallest subuniverse of A extending X, the substructure generated

by X, A[X]. Clearly, by restricting the fundamental operations of A to A[X],

we obtain a subalgebra of A, the subalgebra generated by X in A, and the
process of generating A[X] from below by closing X under all the fundamental

operations as described in ?? applies to the setting of algebras as well, so

A[X]=
[
n2N

Gn[X]

where G is the set of fundamental operations of A, including the nullary ones.

(For the notation, see De�nition ??.)

It follows easily from Proposition 9.3.4 that a subset S of an algebra3 A is

a subuniverse of A if and only if S =A[S].

Example 9.3.5 Consider the group hZ; +;�; 0i, and let X := f2g. Since in
this setting subalgebras are subgroups, Z[X] is the set of even integers, as we
learned from Group Theory. Bottom-up construction yields G0 = f2g, G1 =
f�2; 0; 2; 4g, G2 = f�4;�2; 0; 2; 4; 6; 8g, . . . . It is a tedious but still instructing

2Remember that fSk ; k 2 Kg is a chain if, for k1; k2 2 K, either Sk1 � Sk2 or Sk2 � Sk1 .
3�subset of an algebra� is a clear but not entirely correct abbreviation of �a subset S of

the the universe A of an algebra A�.



118 CHAPTER 9. UNIVERSAL ALGEBRA

exercise to write out the details for the calculation G3[X] = G[G2[X]]. (Cf.

De�nition ?? for details.)

Call a subuniverse S �nitely generated if and only if S =A[X] for some
�nite subset X; especially, an algebra A is �nitely generated i¤ its universe A

is �nitely generated (as a subuniverse).

The following Proposition is another consequence of 9.3.3.

Proposition 9.3.6 For any algebra A,

A[X]=
[
fA[Y ] ; Y � X and Y �niteg :

Proof. Let D :=fA[Y ] ; Y � X and Y �niteg.
If Y � X, then A[Y ]�A[X], so

S
D �A[X].

On the other hand, since D is directed (cf. Proposition 9.3.33.),
S
D is a

subuniverse of A; moreover X �
S
D, so A[X]� D.

In particular, the universe of any algebra is the union of its �nitely generated

subuniverses. A related notion is the following: A is called locally �nite if and
only if every �nitely generated subalgebra of A is �nite (note that A itself need

not be �nitely generated).

Example 9.3.7 Consider A = hZ; +;�; 0i as the additive group with neutral
element 0. Then, A is �nitely generated since A =A[f1g], but A is not lo-

cally �nite for exactly this reason. On the other hand, if we let B be ZN2 , the
product of countably in�nite many two�element groups with operations de�ned

componentwise, we see that B is locally �nite but not �nitely generated. (The

veri�cation is left as an exercise.)

Clearly every �nite algebra is locally �nite. Also, if an in�nite algebra is

locally �nite, it is never �nitely generated. The proofs are left as an exercise.

We conclude this section by looking at extremal subalgebras. The largest

subalgebra of any algebra A is, trivially, A itself. Consequently, our next step

will be to look for coatoms (cf. De�nition 3.1.9) in the lattice SubA.

De�nition 9.3.8 B is a maximal subalgebra of A i¤ B 6= A and for any

subuniverse S of A, B � S � A implies S = B or S = A.

Maximal subalgebras need not exist in a given algebra A. (Exercise: Prove

that the additive group of rational numbers has no maximal subgroups.)

The following digression is intended to spice up the discussion with some

nontrivial �avor. Given any algebra A, let the Frattini algebra �(A) be the
intersection of all maximal subalgebras of A. (If A has no maximal subalgebras,
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�(A) is reduced to the intersection of the empty family of subalgebras of A,

which is A itself.) An element a 2 A is called a non�generator if and only
if it can be dropped from any set generating A, more precisely, if and only if

A[X]= A implies A[X n fag]= A for any X � A. These notions are connected

by the following Proposition.

Proposition 9.3.9 For any algebra A, the universe of �(A) coincides with the
set of all non�generators of A.

Proof. We show that a 2 A fails to be a non�generator exactly if a lies outside
some maximal subalgebra M of A. Suppose a is not a non�generator. Then,

there exists X � A such that A[X]6= A but A[X [ fag]= A. Let S be the
collection of all subuniverses of A containing X but excluding a. S 6= ; since
A[X]2 S. Let C be a chain in S and let S =

S
C. Then S is a subuniverse

by 9.3.3.3 and a =2 S, so S 2 S. By applying Zorn�s Lemma (cf. Section ?? or
Appendix B) we conclude that S contains a subuniverseM maximal with respect

to �, and that the subalgebra M with universe M is a maximal subalgebra of

A. Indeed, if a subalgebra B properly includes M , then X � B and a 2 B,

hence B = A. Since M is therefore a maximal subalgebra not containing a,

a is not contained in the intersection �(A) of all maximal subalgebras of A.

This proves that any non�generator lies outside the Frattini algebra. For the

other direction, assume M is a maximal subalgebra of A and a =2 M . Then,

A[M [ fag]= A while A[M ]=M 6= A, thus a is not a non�generator.

The smallest subalgebra of A is the subalgebra with universe A[;]. (Proof:
exercise.) As mentioned earlier in this section, if the type of A does not include

any nullary operations, this is just the empty algebra of this type. If there are

nullary operations, i.e. constants, we have

A[;]=A[fc ; c is a constantg] :

(Exercise: Prove this statement!) This is familiar from Ring Theory, where the

notion of the characteristic of a (commutative, with 1) domain D is de�ned

as the cardinality of the subring generated in D by the constants 0 and 1. In

the same way as above for maximal subalgebras, we may de�ne here minimal
subalgebras, as opposed to smallest subalgebras, as the atoms (cf. De�nition
3.1.9) in the lattice SubA: Again, they need not exist in a given algebra A.
(Exercise: The additive group of rational numbers has no minimal subgroups,

as has the additive group of the integers.)
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9.4 Direct Products

In Section 7.2, we were �rst acquainted with products of families of L�structures
and saw that, from the viewpoint of First Order Logic , products are not an

appropriate tool to build new models, since satisfaction of axioms is violated.

Algebras on the other hand will prove to be much more resistant to the hostile

e¤ects of building products, since they lack relations. By restricting the classes

of algebras under consideration to those axiomatized by equations we will later

see that satisfaction of these axioms is preserved under products.

From 7.1.1 recall the de�nition of the direct product
Q
s2S As of a family

hAs ; s 2 Si. It is clear that in the case of algebras, this de�nition is simpli�ed
since we do not have to deal with relations. Note that if S = ;, i.e. if we
consider an empty family of algebras (or structures), their direct product is just

f;g �a fact we used already in Remark 9.1.3.3 in order to explain what nullary
operations are.

De�nition 9.4.1 Let Ak (k 2 K) be similar algebras. Then the direct prod-
uct

Q
k2K Ak is the algebra A of the same type with universe

Q
k2K Ak and

fundamental operations fAi given by

fAi (a1; : : : ; ari) := (: : : ; f
Ak
i (a1(k); : : : ; ari(k)); : : :)

for any maps a1; : : : ; ari in
Q
k2K Ak. If Ak

�= A for some algebra A and all

k 2 K, we write AK instead of
Q
k2K Ak and call AK a direct power of A.

We leave it to the readers to convince themselves that their favourite exam-

ple of a direct product construction from classical algebra indeed falls under the

scope of De�nition 7.1.1. Note the case K = ;: Here the direct product degener-
ates into the (unique) one-element algebra of the type considered. Constructions

based on the direct product will play a major role in the following.

It is straightforward (i.e. an easy exercise) to check that the projections

�k associated with the notion of direct products are surjective homomorphisms

from
Q
k2K Ak onto Ak for any collection. Almost as simple is the following

observation.

Lemma 9.4.2 If B and Ak (k 2 K) are similar algebras, and gk : B �! Ak

is a surjective homorphism for each k 2 K, then there is a uniquely determined
surjective homomorphism g : B �!

Q
k2K Ak satisfying gk = �k � g for all

k 2 K.

Proof. Indeed, g de�ned by g(b) :=hgk(b) ; k 2 Ki has the required properties.
(Exercise: Develop the details.)



9.4. DIRECT PRODUCTS 121

More interesting is the fact that direct products of algebras can actually

be characterized by the conclusion of Lemma 9.4.2: Assume C and Ak are

similar algebras and hk : C �! Ak is a surjective homorphisms for every k 2
K. Then we call the pair hC; hhk ; k 2 Kii the categorical product of the
family hAk ; k 2 Ki if and only if, for any algebra B of the same type and

any family hgk ; k 2 Ki of surjective homomorphisms gk : B �! Ak, there is a

surjective homomorphism g : B �! C satifying gk = hk�g for all k 2 K. Thus,
by the above remarks, the direct product is a categorical product. Interestingly,

even the converse holds up to isomorphism, as the following Proposition shows.

Proposition 9.4.3 For any categorical product hC; hhk ; k 2 Kii of a family
hAk ; k 2 Ki of similar algebras, C �=

Q
k2K Ak.

Proof. Suppose hC; hhk ; k 2 Kii is a categorical product of the family hAk ; k 2 Ki.
By 9.4.2 we get a surjective homomorphism g :

Q
k2K Ak�! C with hk�g = �k.

On the other hand, we have seen above by explicit construction that there is

a onto homomorphism h : C �!
Q
k2K Ak such that �k � h = hk for all k.

Hence �k � h � g = �k, which shows that h � g :
Q
k2K Ak�!

Q
k2K Ak must

be the identity map. Thus we have shown that h and g are mutually inverse

isomorphisms and we are done.

In Category Theory, the de�nition of categorical products indeed de�nes

products in a general sense, since categorically isomorphism stands for equality.

We conclude this section with the following fact which neatly connects all

the basic concepts we have studied so far.

Proposition 9.4.4 Let A and B be similar algebras. Then h : A �! B is a

homomorphism from A into B i¤ fha; h(a)i ; a 2 Ag is a subuniverse of A�B.

Proof. This is left as an exercise we do not want to withhold.
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Chapter 10

Congruences

Up to now, the constructions and notions we presented were mere translations

from Model Theoretic concepts to Universal Algebra. We obtained them by gen-

eralizing well-known constructions, thus producing something new from some-

thing old in a straightforward manner. Examples for this process are Homo-

morphic images (Def. 9.2.1 together with 9.3.3.1), subalgebras (Def. 9.3.1), and

direct products (Def. 9.4.1). Conspicuously missing is another construction,

which � although intimately connected with the formation of homomorphic

images � emphasizes the functional character of Universal Algebras, namely

the process of dividing the universe of an algebra into nonempty pieces and

giving the collection of sets thus obtained the structure of an algebra of the

same type (cf. Section 1.4). In Classical Algebra, say Group Theory, this

process amounts to partitions of a group G into co�sets of some normal sub-

group N � G. However, at this point, we need the more general concept of a

congruence relation.

10.1 Congruences and quotient algebras

Suppose we are given an algebraA and an equivalence relation # on the universe

A of A. We want to turn the quotient set A=# into an algebra of the same type

as A in such a way that the canonical map �# becomes a homomorphism. This

requirement completely determines the fundamental operations fA =#
i . Indeed,

we must have (by De�nition 9.2.1)

f
A =#
i (�#(a1); : : : ; �#(ari)) = �#(f

A
i (a1; : : : ; ari));

123



124 CHAPTER 10. CONGRUENCES

or in the notation established in Section 1.4,

f
A =#
i ([a1]; : : : ; [ari ]) = [f

A
i (a1; : : : ; ari)];

for all fundamental operations fi and all a1; : : : ; ari 2 A. Now, if aj ; a0j 2
A with aj#a

0
j for j 2f1; : : : ; rig, then [aj ] = [a0j ] and thus we should have

f
A =#
i ([a1]; : : : ; [ari ]) = f

A =#
i ([a01]; : : : ; [a

0
ri ]). However, there is no reason why

fAi (a1; : : : ; ari) and f
A
i (a

0
1; : : : ; a

0
ri) should be in the same #-class, thus f

A =#
i

as speci�ed is not necessarily well�de�ned. This points out the restriction we

have to impose on #.

De�nition 10.1.1 Let A be an algebra and # an equivalence relation on the

universe A of A.

1. # is compatible with the fundamental operation fAi i¤

aj#a
0
j for j 2f1; : : : ; rig implies fAi (a1; : : : ; ari)#fAi (a01; : : : ; a0ri)

for any choice of ai; a0j 2 A.

2. # is a congruence (relation) on A i¤ # is compatible with all funda-

mental operations of A.

3. Given a congruence # onA, the quotient set A=# equipped with operations

f
A =#
i de�ned by

fiA =#([a1]; : : : ; [ari ]) = [fi(a1; : : : ; ari)]

is called the quotient algebra of A relative to #. ConA denotes the set

of all congruence relations on A.

Note that any equivalence relation is compatible with all nullary operations

(cf. Section 9.1) de�ned on its carrier set. The discussion preceding De�nition

10.1.1 shows that (i) the canonical map �# can be turned into a homomorphism

if and only if # is a congruence on A, and (ii) the algebraic structure imposed

on A by this requirement is uniquely determined.

To include but a few simple examples, we note that�A andrA (cf. Example
1.4.2) are congruences for any algebraA, so they are clearly the smallest and the

largest congruence onA, respectively. As a less trivial example, de�ne a relation

# on Q by a#b if and only if a�b 2 Z. It is easy to check that # is an equivalence
and that # is compatible with + and � but not with �, thus # is a congruence
on the additive group hQ; +;�; 0i but not on the ring hQ; +;�; �; 0; 1i.
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Lemma 10.1.2 If # is a congruence onA, then �# : A �! A =# is a surjective

homomorphism.

Proof. Exercise!
For equivalences we have seen that there was a mutual correspondence be-

tween the kernels of maps and the equivalence relations. Transposed to the

context of congruences, this reads as in the following proposition.

Proposition 10.1.3 For any algebra A, the congruences on A are precisely

the kernels of the homomorphisms with source A.

Proof. Another exercise.

Two di¤erent homomorphisms with source A may have the same kernel

even if both of them are surjective. For example, all automorphisms of A

(i.e. isomorphisms � : A �! A) have the same kernel �A =fha; ai ; a 2 Ag.
However, the targets of surjective homomorphisms with the same kernel are

isomorphic.

Proposition 10.1.4 Assume g1 : A �! B1 and g2 : A �! B2 are surjective

homomorphisms and ker g1 = ker g2. Then B1 �= B2.

Proof. De�ne � : B1 �! B2 by �(g1(a)) := g2(a). Then, � is well-de�ned,

injective and surjective, since

g1(a) = g1(a
0) i¤ g2(a) = g2(a

0);

for any a; a0 2 A, and g1, g2 are both surjective.
Now, for any g1(a1); : : : ; g1(ari) 2 B1 we have

�(fB1
i (g1(a1); : : : ; g1(ari))) = �(g1(f

A
i (a1; : : : ; ari)))

(since g1 is a homomorphism)

= g2(f
A
i (a1; : : : ; ari))

(by de�nition of �)

= fB2
i (g2(a1); : : : ; g2(ari))

(since g2 is a homomorphism)

= fB2
i (�(g1(a1)); : : : ; �(g1(ari)))

(by de�nition of �).

This shows that � is a homomorphism.

The most important consequence of Proposition 10.1.4 is covered by the

following theorem.
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Theorem 10.1.5 (The Homomorphism Theorem) Let � : A �! B be a

surjective homomorphism from an algebra A to an algebra B. Then, B and

A = ker � are isomorphic. In other words, homomorphic images and quotient

algebras of A are identical (up to isomorphism).

Proof. Let � = ker �, then � and the projection �� : A �! A =� are both

surjective and have the same kernel. Consequently, our claim follows by Propo-

sition 10.1.4.

Theorem 10.1.5 may be viewed as the target end dual of Proposition 10.1.3.

If � in 10.1.5 is not surjective, the conclusion reads �[A] �= A = ker �. (Exercise:

Modify the proof of Theorem 10.1.5 to obtain a proof of this statement.)

Given two congruences # and � on some algebra A, each of the congruences

carries over to the quotient of A under the other in a natural way.

De�nition 10.1.6 If A is an algebra and #; � 2 ConA, then #=� is the binary
relation on A de�ned by

#=� :=fh[a]�; [b]�i2 (A =�)2 ; a#bg :

#=� is a binary relation on A, and some simple calculations show that #=� 2
ConA. (Proof: Exercise.)

Example 10.1.7 Consider the group Z = hZ; +; 0i as an algebra of type (2; 0).
For

# :=fhm;ni2 Z2 ; m = n mod 3g

and

� :=fhm;ni2 Z2 ; m = n mod 4g;

we get Z =� = Z4.
[0]� = [4]� = [8]�, so since 4#1, we get [0]�#[1]�; since 8#2, we get [0]�#[2]�;

and since 0#3, we get [0]�#[3]�. Thus we conclude that A = #=� is the trivial

group with one element, [0]�.

In general, there is no nice overall behaviour of #=� expressible in terms #

and �. However, there are exceptions, as can be seen in the following Theorem.

Theorem 10.1.8 If # and � are congruences on the algebra A satisfying � � #,

then

(A =�)=(#=�) �= A =#:

Proof. The isomorphism � : (A =�)=(#=�) �! A =# is given by

�([[a]�]�=�) := [a]#:
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The student is kindly invited to verify that � is well�de�ned and an isomorphism.

Going back to Example 10.1.7, we see that for # and � as de�ned we have

� 6� #. As an alternative, consider � :=fhm;ni2 Z2 ; m = n mod 6g. Then
� � # and indeed (Z =�)=(#=�) �= Z =# = Z2.
The restriction of congruences to subalgebras is worth a few thoughts as

well.

De�nition 10.1.9 If A is an algebra, # 2 ConA and B � A, then we de�ne

B# � A by

B# :=fa 2 A ; a#b for some b 2 Bg :

Exercise 10.1.10 Which of the following statements is true?
1. For any algebra A, any # 2 ConA and any subset B � A, B# is a

subuniverse of A.

2. For any algebra A and any # 2 ConA, the assignment B 7! B# de�nes

a closure operator on A.

We will need a special case of the �rst statement to formulate the next main

result.

Lemma 10.1.11 Let A be an algebra and # 2 ConA. Then, for any subuni-
verse B � A, B# is a subuniverse1 of A.

Proof. If f is a fundamental operation of A and a1; : : : ; ar 2 B#, then there

are b1; : : : ; br 2 B with a1#b1; : : : ; ar#br. Since B is a subuniverse, we have

f(b1; : : : ; br) 2 B;

and # being a congruence, we have

f(a1; : : : ; ar)#f(b1; : : : ; br):

We conclude that f(a1; : : : ; ar) 2 B# by de�nition of B#.
From the point of view of quotients, we obtain nothing new when we switch

from # to # \B2 and from B to B#.

Theorem 10.1.12 If A is an algebra, # 2 ConA and B 2 SubA, then

B =(# \B2) �= B# =(# \B#2):
1For the sake of completeness we must mention that we also write B# for the subalgebra

of A whose subuniverse is B#.
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Proof. De�ne � : B =(# \B2) �! B# =(# \B#2) by

�([b]#\B2) := [b]
#\B#

2 :

To check that � is well�de�ned and an isomorphism is left as an exercise.

Since there usually is an abundance of congruences and equivalences on any

given algebra A, the need arises to impose some structure onto the sets Eq A

and ConA. The direct approach is to treat the relations as sets of ordered

pairs and compare them using �. Thus, if # and � are congruences on some
algebra A, we say that # is �ner2 than � if and only if # � �. If # is �ner than

�, then � is said to be coarser than #.

The sets ConA of congruences and Eq A of equivalences on an algebra A

display interesting features when considered as ordered by �. It is easy to see
that the intersection of a family of congruences (as sets!) is again a congruence,

and the same holds for equivalences. On the other hand, the union of a family

of congruences need not even be an equivalence. As we saw in 3.2.3, arbitrary

intersections (i.e. in�ma of arbitrary families) give rise to arbitrary suprema,

but in this case (as for SubA), suprema are not identical with set theoretical

unions.

Proposition 10.1.13 For any algebra A, the sets Eq A and ConA, ordered

by �, are both complete lattices.

Proof. See 11.1.5, or even better, try it yourself.

For more details on the complete lattice of congruences, see 10.2 below.

We conclude this section with an example intended to show that our de�ni-

tions indeed generalize notions well-known in Algebra.

Example 10.1.14 Let G = hG; �;�1 ; ei be any group, and N � G a normal

subgroup3 . We write ab instead of a � b and aN for fan ; n 2 Ng and the like to
keep notation familiar. Then we de�ne a binary relation #N on G by a#Nb if and

only if aN = bN for a; b 2 G. #N is clearly an equivalence. (Exercise!) Suppose
a#Na

0 and b#Nb0. Then, abN = aNb = a0Nb = a0bN = a0b0N and a�1N =

(N�1a)�1 = (Na)�1 = (aN)�1 = (a0N)�1 = : : : = a0�1N , so #N is compatible

with � and �1. Thus #N is a congruence. Now aN = bN if and only if ab�1 2 N ,
hence a#Nb if and only if a 2 Nb = bN . Since b = be 2 N , this shows that the
#N -class of any b 2 G is just bN . In other words, G =#N �= G =N canonical.

2Despite this being mere nomenclature, it still exhibits the intended use of congruences to
�build blocks�. A congruence thus is the �ner the smaller its block are, i.e. the fewer elements
are related by it.

3Recall that a subgroup N of a group G is a normal subgroup if and only if gHg�1 = H
for all g 2 G, which is equivalent to gH = Hg for all 2 G



10.2. THE LATTICE OF CONGRUENCES 129

Starting with an arbitrary congruence # on G, it is easy to verify that [e]# =: N

is in fact a normal subgroup of G and that # = #N . Thus, congruences on G

and normal subgroups of G correspond bijectively. Accordingly, group theorists

work with normal subgroups rather than with congruences. Note, however, that

this correspondence hinges on �among other facts �the presence of a neutral

element e in G. Consequently, we cannot expect to replace congruences by the

consideration of special kinds of subalgebras in our general setting.

10.2 The lattice of congruences

As we have seen in Proposition 10.1.13, the set ConA of congruences on an

algebra A is a (complete) lattice when ordered by �. However, we have also
seen that the suprema in this lattice are more complicated to describe than the

in�ma. In this section, we want to spice up the results with some more details.

De�nition 10.2.1 If R1; R2 � A2 are binary relations on some set A, then the

relational product R1 �R2 is de�ned by

R1 �R2 :=fha; bi2 A2 ; for some c; ha; ci2 R1 and hc; bi2 R2g :

Note that the product f �g of two maps is not a special case of the relational
product as de�ned above, since � is not read in the same direction. This is, of
course, inconsistent notation, but it serves the convenience of the reader, because

it mirrors the natural direction of reading in both cases.

The relational product in general might display some completely unreason-

able behaviors, in the sense that the product of two rather large relations may

even be empty. The situation changes to the better when we focus on congru-

ences and equivalences.

Exercise 10.2.2

1. Is the relational product commutative? Is it associative?

2. What if we restrict ourselves to equivalences on some set A?

3. Given two equivalences #, � on some set A, is the relational product # � �
always an equivalence?

4. Show that for # 2 Eq A, # � # = #.

In order to iterate the relational product over three and more factors, we

have to agree on a reading in which we may omit the brackets. Thus, we de�ne
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for binary relations R1; : : : ; Rn the product R1 � : : : �Rn by

R1 � : : : �Rn := R1 � (R2 � (: : : (Rn�1 �Rn) : : :)):

Another notion not totally foreign, but still unexpected in connection with

relations, is the inverse of a relation.

De�nition 10.2.3 If R � A2 is a binary relation on a set A, then R�1 denotes

the (relational) inverse of R and is de�ned by

R�1 :=fhb; ai2 A2 ; ha; bi2 Rg :

The notion inverse demands for a reference to an operation, which in this

case is, of course, the relational product �. Unfortunately, things are not as
straightforward as with inverses in, say, groups. Clearly, the inverse of a relation

on A is always de�ned (other than with functions), and it is again a relation on

A. However, we do not have a nice cancellation property as in the case of groups

where the product of an element and its inverse results in the neutral element

of the binary product. On any set A, �A is the unit element with respect to

� (why?), but we do not have R � R�1 = �A in general (why not?). The next
exercise states the most direct consequences.

Exercise 10.2.4 Show that for #1; #2 � A2, we have

(i) (#1 � #2)�1 = #�12 �#�11 ;

(ii) #1 � #2 i¤ #
�1
1 � #�12 .

For equivalences, fortunately, matters are much simpler.

Exercise 10.2.5 Show that for # 2 Eq A, we have #�1 = #.

The title of the current section promised that we will deal with the lattice

of congruences, therefore we should have a closer look at the inner structure of

this lattice. We already know from 10.1.13 that ConA is a complete lattice,

and we know how to compute the in�mum of a given set of congruences on A.

We also know that the supremum is generally not the same as the set union.

Of course, in some cases we might be lucky as the following proposition shows.

Proposition 10.2.6 If � is a directed set of congruences, i.e. if #1; #2 2 �
implies #1; #2 � � for some � 2 �, then Sup� =

S
�.

Proof. It su¢ ces to show that
S
� is a congruence. Since all the # 2 � are

re�exive,
S
� is also re�exive. The same argument applies to symmetry. To
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show transitivity, assume ha; bi; hb; ci2
S
�. Then there are #1; #2 2 � with

ha; bi2 #1 and hb; ci2 #2. By directedness, we �nd � 2 � with #1 � � � #2,

hence ha; bi; hb; ci2 �, and since � is a congruence and therefore transitive, we

�nd ha; ci2 � �
S
�.

For compatibility, assume that ha1; b1i; : : : ; han; bni2
S
� and that f is an

n�ary fundamental operation of the algebra carrying the congruences in �. We

have to show that

hf(a1; : : : ; an); f(b1; : : : ; bn)i2
[
�:

From ha1; b1i; : : : ; han; bni2
S
� we conclude that there are #1; : : : ; #n 2 � with

hai; bii2 #i. Applying directedness of � n � 1 times, we �nd � 2 � such that

#1; : : : ; #n � �, hence ha1; b1i; : : : ; han; bni2 �. Finally, since � is a congruence,

hf(a1; : : : ; an); f(b1; : : : ; bn)i2 � �
[
�:
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Exercise 10.2.7

1. Does the converse also hold? That is, does Sup� =
S
� imply that � is

directed?

2. Does Proposition 10.2.6 hold for equivalences as well?

Luckily there are other characterizations of the supremum of a set of con-

gruences, which work in a more general setting.

Proposition 10.2.8 If � is a set of congruences on an algebra A, then

Sup� =
[
f#0 � : : : � #n ; n 2 N; #0; : : : ; #n 2 �g :

Proof. We shall only outline the procedure and leave the details to the reader:
Let � :=f#0 � : : : � #n ; n 2 N; #0; : : : ; #n 2 �g. Then the following two state-

ments hold.

1.
S
� is a congruence, and # �

S
�, for any # 2 �. Thus, Sup� �

S
�.

2. #0 � : : : � #n � Sup�, for all n 2 N and all #0; : : : ; #n 2 �. Thus,
S
� �

Sup�.

In other words, the supremum of congruences is the union of the (�nite)

iterated product of these congruences.

Note that the supremum of a set of congruences is expressed by �nite prod-

ucts: ha; bi2 Sup� if and only if, for some n 2 N, some #0; : : : ; #n 2 � and

some a0; : : : ; an+1 2 A,

a = a0#0a1#1a2#2 : : : an#nan+1 = b:

Exercise 10.2.9 Does Proposition 10.2.8 remain valid if �congruence� is re-
placed with �equivalence�?

Using the characterization given in Proposition 10.2.8, we �nd the following

result.

Proposition 10.2.10 For #1; #2 2 ConA, the following are equivalent:

(i) #1 � #2 = #2 � #1;

(ii) Sup f#1; #2g = #1 � #2;

(iii) #1 � #2 � #2 � #1.
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Proof. Exercise.

If one (and thus any) of the clauses of Proposition 10.2.10 holds, we say that

#1 and #2 are permutable. An algebra A such that any two congruences in

ConA are permutable is called congruence�permutable, and consequently
a class K of algebras is called congruence�permutable if any algebra in K is
congruence�permutable.

Finally, we would like to show that the congruence�lattice of a quotient is

isomorphic to a sublattice of the original congruence�lattice. We �rst need the

notion of an interval in a lattice.

De�nition 10.2.11 If hL;�i is a lattice, then a subset I � L is called a

(closed) interval in L if, for some a1; a2 2 L, I =fb 2 L ; a1 � b � a2g. In
this case we write I = [a1; a2].

Clearly, the closed intervals in R are intervals in the sense of the above

de�nition.

The following Lemma is worth some attention.

Lemma 10.2.12 For any lattice L =hL;�i and any a; a0; b; b0 2 L, the following
two statements hold.

1. [a; b] = [a0; b0] i¤ a = a0 and b = b0.

2. [a; b] is a sublattice4 of L.

Proof. Exercise.

Theorem 10.2.13 (Correspondence Theorem) If A is an algebra and # 2
ConA, then the lattices ConA =# and [#;rA] are isomorphic.

Proof. The isomorphism � is given by �(�) := �=#. The details of this proof

are left as an exercise.

10.3 Generating congruences

When considering the group hZ; +; 0i, our experiences in Algebra tell us that
congruences on Z correspond to calculations modulo some n. More to the point,
for any congruence # on Z there is a number n such that, for any k; l 2 Z, k#l
if and only if k = l mod n. If we divide Z by this congruence, we �nd the
(quotient�)group Zn = Z=nZ.

4With this we clandestinely switched from the order�theoretic aspect of L to the algebraic
one, since here sublattice stands for subalgebra.
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There is another way of looking at this: Starting from Z, we wonder what
would be the consequences if we considered n to be the same as 0. Clearly we

would then conclude that n+ 1 = 1, n+ 2 = 2; : : : ; 2n = 0; 2n+ 1 = 1; : : : and

so on. Finally we would end up with the very structure we called quotient group

a little earlier.

As we can see in the following De�nition, there is even an algebraic way of

formulating this little game of �I wonder what would happen if n were 0�.

De�nition 10.3.1 If A is an algebra and R � A2, then

�(R) :=
\
f# 2 ConA ; R � #g

is called the congruence generated by R in A.

If R =fha1; b1i; : : : ; han; bnig is �nite, then we simply write

�(ha1; b1i; : : : ; han; bni)

for �(R). Moreover, if S � A, then we write �(S) for �(S2).

As seen in Proposition 10.1.13, ConA is a complete lattice with meet corre-

sponding to set�intersection. Therefore, congruences generated by some R are

indeed congruences.

Corollary 10.3.2 For any algebra A and any R � A2, �(R) is a congruence

on A. In fact, it is the least congruence # on A such that for any ha; bi2 R,

a#b.

Proposition 10.3.3 If A is an algebra and � � ConA, then

Sup� = �(
[
�) :

Proof. Exercise.

In other words, the supremum of congruences is the congruence generated

by the set�union of the respective congruences.

Complete lattices stand in direct correspondence to closure systems (cf. De-

�nition 3.2.4), and thus the generation of congruences de�nes a closure operator

(see De�nition 3.2.5). The proof of this is left as an exercise.

We started this section by examining congruences in the group Z. This

may be somewhat misleading since almost every congruence on Z is of the form
�(ha; bi). (The proof of this claim and to �nd its exceptions is left as an exercise.)
Congruences generated by a single pair of elements of the carrier (cf. De�nition

1.4.1) even have their own names.
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De�nition 10.3.4 A principal congruence on an algebra A is a congruence

�(ha; b; )i generated by two elements.

As mentioned at the end of the previous section, our aim is to develop

another compactness�result (cf. Compactness Theorem 2.4.5) in the context of

congruences.

Proposition 10.3.5 Let A be an algebra and # 2 ConA. Then the following
statement holds.

# = Sup f�(ha; bi) ; a#bg =
[
f�(ha; bi) ; a#bg

=
[
f�(R) ; R � #;R �niteg :

Proof. We proceed in �ve steps which will yield the desired equations.

(1) # �
S
f�(ha; bi) ; a#bg,

since ha; bi2 �(ha; bi);

(2)
S
f�(ha; bi) ; a#bg� Sup f�(ha; bi) ; a#bg,

since
S
� � Sup� for all sets � of congruences on some algebra;

(3) Sup f�(ha; bi) ; a#bg � Sup f�(R) ; R � #;R �niteg,
since �(ha; bi) = �(fa; bg) and therefore f�(ha; bi) ; a#bg�f�(R) ; R � #;R �niteg;

(4) Sup f�(R) ; R � #;R �niteg =
S
f�(R) ; R � #;R �niteg,

since f�(R) ; R � #;R �niteg is directed (cf. Proposition 10.2.6);

(5)
S
f�(R) ; R � #;R �niteg� #,

since �(R) � # for all R � #.

Putting everything together, we �nd

# �
[
f�(ha; bi) ; a#bg

� Sup f�(ha; bi) ; a#bg

� Sup f�(R) ; R � #;R �niteg

=
[
f�(R) ; R � #;R �niteg

� #:

Thus, a congruence is the supremum of its principal sub�congruences.

Exercise 10.3.6 Which of the equations in Proposition 10.3.5 hold if congru-
ence is replaced by equivalence (and consequently generation of congruences by

generation of equivalences)?
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We like to put this result in context with closure systems. The last term in

the equation above states that the closure operator assigning to each relation

the smallest closure operator containing it is what we call an algebraic closure
operator.

De�nition 10.3.7 A closure operator C on a set X is called algebraic if for
any S � X, C(S) =

S
fC(Z) ; Z � S;Z �niteg. A lattice is called an alge-

braic lattice if it is order�isomorphic (i.e. isomorphic as ordered sets) to the
closure system associated to an algebraic closure operator.

As a direct consequence of being order�isomorphic to a closure system, every

algebraic lattice is clearly complete. An alternative characterization of algebraic

complete lattices uses the notion of compact elements of a complete lattice.

De�nition 10.3.8 An element a of a complete lattice L =hL;�i is called com-
pact if, for any subset S � A, the following statement holds.

Whenever a � Sup S; then for some �nite S0 � S; a � Sup S0 :

Here we �nd Compactness again (cf. Proposition 10.3.5 and Theorem 2.4.5).

The setting is closely related to the notion of compact (subsets of) topological

spaces, where � as you might know if you have ever dealt with set�theoretical

topology � compactness stands for the property that every covering by open

sets has a �nite sub�covering. Examples of compact closed subspaces of the real

line R as a topological space are the closed intervals [�; �].
Compact elements a in complete lattices can always be reached in a �nite

number of steps in the following sense. If for some chain C � A we have

SupC � a, then c � a for some c 2 C. (Exercise: prove this!)
As an exercise, so as to become used to the notion of compact elements, you

might like to show the following statements.

� Every complete lattice has at least one compact element.

� Finite lattices consist of compact elements exclusively.

� The compact elements in the complete lattice hP(X);�i are exactly the
�nite Y � X.

Trivially, every element in a complete lattice is an upper bound of the com-

pact elements that lie below it:

a � Sup fc � a ; c compactg :

In an algebraic lattice, a is even the least upper bound.
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Proposition 10.3.9 The following statement is true for any complete lattice
L =hL;�i.

L is algebraic i¤ for all a 2 A, a = Sup fc � a ; c compactg :

As suggested by the nomenclature, examples are primarily found in the �eld

of algebra.

Proposition 10.3.10 ConA, Eq A and SubA are algebraic lattices for any

algebra A.

Proof. For ConA, the claim follows directly from Proposition 10.3.5.

For Eq A, we �rst prove the analogue of Proposition 10.3.5 for equivalences

(which should have been done in Exercise 10.3.6). The rest is simple.

For SubA, Proposition 9.3.6 is exactly what we need.

Examples of non�algebraic complete lattices, on the other hand, seem to be

less natural than their algebraic cousin.

Exercise 10.3.11 Find an example of a non�algebraic complete lattice.

The relationship between algebraic lattices and algebras is a very close one,

as can be seen in the next result. Its complete proof exceeds the scope of this

lecture.)

Theorem 10.3.12 (Birkho¤ and Frink)
Let L be a complete lattice.

L is algebraic i¤ L is order�isomorphic to SubA for some algebra A :

Proof. Since we know that SubA is algebraic for any algebra A, and we know

that being an algebraic complete lattice is preserved under order�isomorphisms

(proof: exercise), the statement that every lattice order�isomorphic to the lattice

of sub�algebras of some algebra A is algebraic, is quite obvious.

The tough part, for which we refer to the literature, is to show the converse.

Here we have to construct an algebra whose lattice of sub�algebras is order�

isomorphic to L.
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Chapter 11

Orders as Algebras

As mentioned in Chapter 3, semilattices and lattices give rise to an algebraic

way of looking at order�relations by treating Sup and Inf as binary operations.

The aim of this chapter is to study fundamental properties of ordered sets which

allow for this kind of algebraization of their internal structure, thereby providing

examples for universal algebras.

11.1 (Semi�)Lattices as Algebras

De�nition 11.1.1 1. A binary operation � on some set S is called a semilattice�
operation i¤ it is

� associative, i.e. x � (y � z) = (x � y) � z for all x; y; z 2 S,

� commutative, i.e. x � y = y � x for all x; y 2 S and

� idempotent, i.e. x � x = x for all x 2 S.

2. A semilattice is an algebra S = hS; �i of type 2 such that � is a semilattice�
operation.

While 3.1.12 provided the relational aspect of semilattices, the above de�n-

ition re�ects their algebraic side. As we shall see, these two aspects are freely

interchangeable.

Proposition 11.1.2 Every Sup�semilattice (every Inf �semilattice) hS;�i is a
semilattice. Indeed, Sup (Inf ) restricted to 2-element subsets of S and consid-

ered as a binary operation on S is obviously a semilattice operation.

Conversely, every semilattice operation � on a set S may be used to de�ne two
orders �s and �i on S by setting for any x; y 2 S x �s y if and only if y = x � y
and x �i y if and only if x = x�y, respectively. Then hS;�si is a Sup�semilattice

139
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and hS;�ii an Inf �semilattice. The orders �s and �i are dual to one another.
Moreover, these transformations are mutually inverse, that is, the binary oper-

ation Sup derived from �s coincides with � for any semilattice hS; �i, and �s
derived from binary Sup in any Sup�semilattice hS;�i coincides with � (and

analogously for Inf �semilattices and �i).

It is customary to write t for the semilattice operation corresponding to
binary Sup and to call the associated algebra S = hS;ti a join�semilattice;
similarly, if the operation corresponds to binary Inf , it is written as u and

the algebra S = hS;ui is called a meet�semilattice. The choice whether a
given semilattice should be regarded as a join�semilattice or a meet�semilattice

amounts to specifying which one of two orders �i, �s we wish to impose on
the semilattice�s carrier. However, picking u to denote the semilattice operation
always means that the associated order is �i respective to which u is just binary
Sup (and similarly for t and �s).
Since we showed that the two ways of looking at semilattices (order vs.

algebra) are interchangeable in the above sense, it is natural to wonder whether

this works for lattices as well. Thus, �rst we need the algebraic notion of a

lattice.

De�nition 11.1.3 An algebra L = hL;t;ui of type (2; 2) is a lattice i¤ both
hL;ti and hL;ui are semilattices and the following absorption identities hold
for any x; y 2 L:

x t (x u y) = x (�)
and

x u (x t y) = x (��)

Proposition 11.1.4 If hL;�i is a lattice (as a poset), then hL; Sup�; Inf�i is
a lattice (as an algebra).

Conversely, if hL;t;ui is a lattice (as an algebra), then the two order�relations
�t and �u as de�ned in Proposition 11.1.2 are identical and hL;�ti is a lattice
(as a poset). Moreover, the transformation is mutually connected by

hL;�t�i=hL;�i

and

hL;t�t ;u�ti = hL;t;ui :

Proof. Exercise.

Example 11.1.5
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1. Recall from De�nition 1.4.1 that Eq X denotes the set of all equivalence�

relations on the set X. Consider the order (Eq X;�) (X any set) given

by � � � i¤ � � � for any �; � 2 Eq X (cf. Proposition 10.1.13). We

have � � � i¤ hx1; x2i2 � implies hx1; x2i2 � i¤ every �-block [x]� is

contained as a subset in a (uniquely determined) �-block [x]� (verify!).

We will show that Inf and Sup of f�; �g always exist, this means that
(Eq X;�) is a lattice under the the corresponding operations; however,
these operations are not so closely tied to the set operations [ or \.

The proof of the existence of Inf is easy: If 
 2 Eq X, 
 � � and 
 � �,

then every 
-block C is contained in some �-block A and in some �-block

B, thus C � A \B. The collection of all sets A \B with A ranging over

�-blocks and B ranging over �-blocks is a partition of X (verify!) and so

determines an equivalence � 2 Eq X. Clearly � � �, � � � and 
 � �,

so � indeed is the Inf of � and � in (Eq X;�).

To show the existence of Sup , suppose � � 
, � � 
 and consider an

�-block A and a �-block B such that A \ B 6= ;. The unique 
-block
C containing A then has a nonempty intersection with B and must thus

coincide with the unique 
-block C 0 containing B. Iterating the argument,

consider a sequence of blocks H1: : : : ;Hm from either � or � such that

Hi \ Hi+1 6= ; for 1 � i < n: If x1 2 H1, xm 2 Hm and x1 2 C for

some 
-block C, then also xm 2 C. Now de�ne a binary relation � on

X by x1�xm i¤ a sequence H1; : : : ;Hm exists as above with x1 2 H1

and xm 2 Hm. It is straightforward to check that � is an equivalence

relation (do so!); moreover, every �-block is contained in a unique 
-block

by construction. It follows that � � 
. On the other hand, � � � and

� � � are immediate (consider sequences consisting of just one block from

either � or �), so � is indeed the Sup of � and � in (Eq;�).

2. Continue the preceding example and assume that � and � are actually

congruences on some algebra A. We leave it as an exercise to the reader

to show that Inf and Sup of � and � computed as equivalences as above

are indeed congruences again. It follows that hConA;u;ti is a lattice
with operations � u � = Inf f�; �g and � t � = Sup f�; �g.

3. Consider the algebra N = hN;u;ti with m u n = g.c.d of m and n, m t
n = maxfm;ng. Both operations are semilattice operations, and (��) of
De�nition 11.1.3 is satis�ed since g.c.d.(m;n)� m;n. However, (�) fails
as e.g. 2u (2t 3) = 2u 3 = 1. Thus N is not a lattice. This example also

shows that the two absorption identities (*) and (**) are independent.

Clearly, by taking l.c.m. and min as operations, we get another example
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of two semilattice operations satisfying (��) but failing (�) of De�nition
11.1.3.

As has become apparent in the preceding examples, it often depends on the

context whether the order relation or its two operations constitute the natural

way to discuss a speci�c lattice. Accordingly, we will abuse notation sometimes

and speak of the lattice L = (L;�) whenever � is the order on L jointly induced
by the operations u and t of the lattice L = hL;u;ti.
If hP1;�1i and hP2;�2i are posets, a function � : P1 �! P2 is said to pre-

serve the order if

p �1 q implies �(p) �2 �(q) for all p; q 2 P1:

Funtions which preserve the order are also called order�homomorphisms
(from P1 to P2). Note that this de�nition agrees with the de�nition of a L�
homomorphism (cf. De�nition 4.4.1) for the formal language L having a binary
relaion�symbol as its only non�logical symbol.

Exercise 11.1.6 Let L = hL;u;ti be a lattice and let � be the order stemming
from u and t in the sense of Proposition 11.1.4. Show that x � x0 and y � y0

imply x u y � x0 u y0 and x t y � x0 t y0, i.e.
u : L2 �! L and t : L2 �! L are order�preserving.

11.2 Distributive and Modular Lattices

There are some distinctive properties of lattices which are captured by laws

resembling the group laws or ring laws familiar from classical algebra (see Ex-

ample 9.1.4 3). Such laws are actually formulae of the underlying language of

the class of algebras under consideration. To consider the collection of all alge-

bras of the same type is most often pointless, since the algebraic properties and

internal structure common to all algebras of a given type are far too general

to be of interest. By imposing laws in the above sense, we limit the class of

algebras we want to deal with, hopefully ending up with common properties

worth studying.

Consider a lattice of sets L = hL;\;[i as in Example 3.1.15 2. It is a

beginner�s exercise in Set Theory to show that for any three sets U , V andW the

equations U\(V [W ) = (U\W )[(V \W ) and U[(V \W ) = (U[W )\(V [W )
always are satis�ed. Abstracting to an arbitrary lattice L, we adopt the following

de�nition.
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De�nition 11.2.1 A lattice L = hL;u;ti is called distributive i¤ it satis�es
the two equations

x u (y t z) = (x u y) t (x u z) (Du)

and

x t (y u z) = (x t y) u (x t z) (Dt)

for all x; y; z 2 L.

It follows that every lattice of sets hL;\;[i is distributive. Most interestigly,
the converse is also true; however, the proof of this highly nontrivial fact lies

beyond the scope of this lecture.

There are many equivalent statements characterizing distributive lattices.

We only mention here that Du and Dt imply each other in the sense that

whenever either one is satis�ed in a lattice for all x; y; z, then so is the other.

(Exercise: Prove this claim.)

Exercise 11.2.2 Find out which of the following �nite lattices are distributive:
2, N5, M3, B3 (cf. Example 3.1.16).

Consider the collection S of all subspaces of a vector space V. Since the
intersection of any family of subspaces is a subspace again, S is a closure system
on the carrier V of V. Consequently, hS;�i is a complete lattice. In general,
it is simple to �nd subspaces A, B and C of V such that A \ (B [ C) 6=
(A \B) [ (A \ C) (consider three pairwise di¤erent 1-dimensional subspaces!),
so we conclude that such a lattice of subspaces is not distributive in general.

However, the equation for distributivity is true when restricted to the case

A � C. This is the motivating example for the next de�nition.

De�nition 11.2.3 A lattice L = hL;u;ti is called modular i¤ it satis�es the
implication

x � z ! x u (y t z) = (x u y) t (x u z) (M)

for all x; y; z 2 L.

So L is modular if and only if it satis�es (Du) in special cases; hence, every

distributive lattice is modular. The converse is not true, as examples in the

following Exercise show.

Exercise 11.2.4 Find out which of the following �nite lattices are modular: 2,
N5, M3, B3 (cf. Example 3.1.16 and Exercise 11.2.2).
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Again, there are many di¤erent statements characterizing modular lattices.

Here, we only note the following.

Exercise 11.2.5 Show that a lattice L = hL;u;ti is modular i¤

((x u z) t y) u z = (x u z) t (y u z)

for all x; y; z 2 L.

11.3 Complemented Lattices

Given any set X, hP(X);�i is a distributive lattice P(X) = hP(X);\;[i, as
we have seen above, with 0P(X) = ; and 1P(X) = X. Moreover, for each

A 2 P(X) there exists B 2 P(X) such that A [ B = X and A \ B = ;. We
abstract this situation in the following de�nition.

De�nition 11.3.1 A lattice L = hL;u;ti is bounded i¤ it contains a least
element 0L and a greatest element 1L. If L is bounded and x 2 L, an element
y 2 L is a complement of x i¤ y t x = 1 and y u x = 0. A bounded lattice L
is complented i¤ every x 2 L has a complement.

Do not be misled to think that � as is the case for P(X) � complements

need to be unique. For example, N5 is complemented, but there is an element

which has more than one complement (which one?). The reason for this ambi-

guity lies in the non�distributivity of N5.

Lemma 11.3.2 In a distributive lattice any element has at most one comple-
ment.

Proof. Exercise.
However, distributivity in itself does not guarantee the existence of comple-

ments.

Exercise 11.3.3 Show that in a chain, only the top and bottom elements have

complements, so chains considered as lattices are not complemented if they have

more than two elements.

Lattices that are both distributive and complemented present an important

special case. For historical reasons, they are called Boolean lattices. So all
lattices P(X) as considered above are Boolean. The converse, however, is not
true, not even in a weaker form, i.e. not all Boolean lattices are isomorphic1

1A order�isomorphism is an order�preserving, bijective function with order�preserving
inverse function. Two lattices L and L0 are isomorphic if there is an order�isomorphism
� : L �! L0. This is easily shown to be equivalent to being isomorphic as algebras.
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Figure 11.1: George Boole (1815-1864)

to a lattice P(X) for some set X. Consider, for example, the lattice with all
�nite and co�nite subsets of some in�nite set X as its carrier set and with

the operations of set union and intersection. (Exercise: Verify that this de�nes

indeed a Boolean lattice.)

In a Boolean lattice L the assignment of a (unique) complement to each

element may be regarded as a unary operation on L. Writing 0 for this operation,

and adding the bounds 0 and 1 as constants to the algebra, we turn L into an

algebra B of type (2; 2; 1; 0; 0) by setting B = hL;u;t; 0;0;1i. Such algebras
are called Boolean algebras; they were �rst considered in 1854 by George
Boole in his investigations in propositional calculus. They are, together with

the permutation groups of roots of polynomials as studied by Galois, among the

�rst abstract algebras in our sense. Again, the power set lattices above provide

standard examples. To keep notation clean, we write B(X) for the Boolean

algebra B(X) = hP(X);\;[;c ; ;; Xi where c stands for set complementation

with respect to X, and just Bn if X has n elements. Again, not every Boolean

algebra is of this sort as the �nite-co�nite example above shows. Finally, BA

denotes the class of all Boolean algebras.

Now consider a topological space X =hX;Oi, that is, a set X together with

a collection O of subsets of X which is closed under �nite set intersections and

arbitrary set unions and furthermore contains ; and X (O is the collection of

open sets of the space X ). O is easily seen to be a bounded distributive lattice

under the operations \ and [. As the standard examples like the real line R or
the real plane R2 show, an open set U 2 O has very rarely a complement within
O, that is, an open set V 2 O such that U [ V = X and U \ V = ;. (As an
exercise, look for open sets with an open complement in R or R2.)

In a distributive bounded lattice hL;�i, the complement x0 of some x 2 L

has the property that it is the largest z 2 L such that z u x = 0. Indeed, if

z u x = 0, then

z = z u 1 = z u (x t x0) = (z u x) t (z u x0) = 0 t(z u x0) = z u x0
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and thus z � x0 in the canonical order of L. Returning to the lattices O of open
sets, it is not di¢ cult to see that there is always a largest open set which is

disjoint from some given open set U : The set of all interior points of X nU . We
abstract the weaker property, not con�ning ourselves to the distributive case.

De�nition 11.3.4 Let L = hL;u;ti be a lattice with bottom element 0L, and
x; x� 2 L. Then x� is called a pseudocomplement of x i¤

(i) x u x� = 0 and

(ii) x u z = 0 implies z � x� for all z 2 L.

L is called pseudocomplemented i¤ every x 2 L has a pseudocomple-

mented.

The de�nition of pseudocomplements requires only the existence of a least

element 0 in L. However, if a; b 2 L have pseudocomplements a�; b� in L,

respectively, and a � b, then b� � a� (Exercise: Prove this!); so a pseudocom-

plemented lattice will always have a greatest element, namely 0�.

Every complemented lattice is pseudocomplemented but not vice versa (as

the lattices O of open sets show); also every chain, considered as a lattice,

is pseudocomplemented but not complemented whenever it has at least three

elements (Exercise: Why?).

As for complements in lattices, the assignment of the (unique) pseudocom-

plement to each element may be regarded as a unary operation on L. Writing
� for this operation, we make L an algebra A of type (2; 2; 1; 0; 0) by setting

A = hL;u;t; �;0;1i where 0 and 1 are constants denoting the bounds of L.
We will call such algebras lattices with pseudocomplementation. It is no
loss of generality to include 1 among the constants since is de�nable by means

of � and 0.

The most interesting case occurs if the lattice with pseudocomplementation

is distributive as a lattice. Such algebras are commonly called p�algebras and
the corresponding class is denoted by PALG. The open set lattices O are typi-

cal examples of p�algebras. p�algebras arise in logic much in the same way as

Boolean algebras. While the latter serve as algebraic models of classical propo-

sitional calculus, p-algebras model (a fragment of) intuitionistic propositional

calculus; see [?] for a thorough study of this connection. A more recent ap-

plication of p�algebras within Computer Science is to use them as models for

so-called rough sets, see e.g. [?] and the references given there. Of course, every
Boolean algebra is a p�algebra. p�algebras will serve as a prime source of exam-

ples to illustrate many of the universal algebraic concepts addressed throughout

this lecture.
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Nondistributive lattices which are pseudocomplemented but not comple-

mented exist in abundance. Indeed, pick your favorite bounded nondistribu-

tive lattice L and add a new bottom element ?; the resulting ordered set is
a lattice where exactly 1L and ? have complements, and where ? serves as a

pseudocomplement of everything except itself.

Exercise 11.3.5 Check the claim from the previous paragraph for M3.
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As a consequence, the class of algebras arising from such lattices by adding

pseudocomplementation as a fundamental operation is too diverse to admit a

meaningful structure theory (with a few exceptions).

Note that in De�nition 11.3.4 only the meet operation u is used, so pseudo-
complements may meaningfully be de�ned in any meet semilattice with a zero.

As we will see, such algebras have many interesting features, especially when

compared to p�algebras.

De�nition 11.3.6 A meet�semilattice S = hS;ui with least element 0S is

pseudocomplemented i¤ every x 2 S has a pseudocomplement in the sense

of Def. ??.

We will exclusively consider pseudocomplemented semilattices in the type

(2; 1; 0; 0), that is, with pseudocomplementation as a fundamental operation as

well as 0 and 1 = 0�. We call such algebras p�semilattices and write PCS for
the their class. Here is a p�semilattice which is not a lattice:

Example 11.3.7 Let U be the collection of open subsets of R which are con-
tained in the open interval (�2; 2) but do not contain (�1; 1), together with all
intervals of the form (�2�1=n; 2+1=n), and ; and R. Ordered by set inclusion,
U is a meet semilattice with \ as Inf but not a lattice since, e.g., (�1:5; 0) and
(0; 1:5) have no Sup within U (why?).
The pseudocomplement of any nonempty set in U is ;, which itself has R as

its pseudocomplement.
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Our discussion of complements would not be complete without mentioning

the numerous variants of complementation properties which are considered in

the lattice theoretic literature. There we might encounter dual pseudocomple-

ments (de�ned in terms of join and greatest element), relative complements and

pseudocomplements (with respect to an interval [a; b] within a lattice), or oper-

ations which obey some but not all of the identities valid for complementation

in a distributive lattice. These variants lead us to algebras known as Heyting

algebras, Post algebras and De Morgan algebras, just to mention a few. [?] is a
good reference.

11.4 Order and First�Order Logic

Taking a closer look at the de�nition of complete lattices, we realize that it

is formulated using notions that are not expressible in �rst�order logic: Every

subset must have an in�mum and a supremum. We therefore might argue

that the de�nition uses second�order concepts and is thus not restateable in

�rst�order languages. This argument is clearly short�sighted in that it draws a

general conclusion from our failure to �nd an appropriate formalization. From

the results of Chapter 8, we know what it means for a class of structures not

to be axiomatizable in �rst�order logic. Thus in order to show that the class of

complete lattices cannot be captured using �rst�order concepts exclusively, we

use the semantic way and show that this class is not closed under ultraproducts.

As a formal language we use L�, the formal language having but the binary
relation�symbol � as a non�logical symbol. An L��structure is thus basically
a set with a binary relation de�ned on it. However, since we want to con-

sider lattices in general and complete lattices speci�cally, we note the following

proposition.

Proposition 11.4.1 The class of partially ordered sets is basic�elementary, as
is the class of lattices.

Proof. To a¢ rm a class of being (basic�)elementary is easier than to refute it,

since for the former we only need to present a (�nite) set of axioms which does

the job. As an exercise, �nd an appropriate set of L��sentences �L such that
Mod�L is exactly the class of lattices.

The ultraproduct we are going to construct next may look funny as a com-

plete lattice, yet it is suitable for our purpose.

Let N̂ be the set N enriched by a new element we will denote by >. Using
the (canonical) order�relation � on N, we de�ne the binary relation �N̂ on N̂
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by setting > to be the (new) greatest element2 , i.e.

x �N̂ y i¤ [x; y 2 N and x � y] or y = >

for all x; y 2 N̂. Since �N̂ is an extension of �, we risk no confusion in simply
writing � for both relations.

Exercise 11.4.2 Show that � as de�ned above is an order on N̂ and that hN̂;�i
is a complete lattice.

Let U be an ultra�lter over N containing all co�nite subsets of N, and let
A :=N̂N=U . The proofs of the following observations are left as exercises for the
reader.

� A is a lattice with greatest element>A := h>;>;>; : : :iU and least element
0A := h0; 0; 0; : : :iU .

� All elements of A except >A and 0A have an upper and a lower cover (cf.
Section 3.1).

� h0; 1; 2; : : :iU is an upper bound of N :=fn ; n 2 Ng in A, where n :=

hn; n; n; : : :iU .

� If b 2 jAj is an upper bound of N, then so is the lower cover of b. (Hint: If
such a lower cover c were not an upper bound of N, then for some n 2 N,
n � c � n+ 1, from which we conclude c = n or c = n+ 1. But then b,

being the upper cover of c, could not be an upper bound of N.)

� N does not have a supremum in A (and the set of upper bounds of N has
no in�mum).

So we �nd a subset of A having no supremum, thus A is not a complete

lattice. Since A is an ultraproduct of complete lattices, we have a proof for the
following proposition.

Proposition 11.4.3 The class of complete lattices is not an elementary class.

11.5 Order vs. Algebra

In some cases, ordered structures allow for algebraization of their order�relation.

Although the relational and the algebraic aspect are mutually dual, there are

2From Set Theory you probably remember the set ! + 1, the ordinal successor of the �rst
in�nite ordinal !. Actually, our set N̂ is exactly of ordinal type ! + 1, or in other words, the
ordered sets hN̂;�i and h! + 1;2i are isomorphic.
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di¤erences if we consider classes of ordered sets as a whole, especially if we

include structure�preserving maps in our considerations.

From Section 11.1, recall the notions of order�preserving maps, order�homomorphisms

and order�isomorphism. If hL1;�1i and hL2;�2i are lattices, then a map
� : L1 �! L2 is a lattice�homomorphism if � preserves Sup and Inf , i.e. if

�(Sup x; y) = Sup �(x); �(y)

and

�(Inf x; y) = Inf �(x); �(y)

for all x; y 2 L1, where the Sup �s and Inf �s are taken in the appropriate lattice
L1 or L2. Of course, if we consider just one of the two identities above, we get

a de�nition of a semilattice�homomorphism.

A lattice�isomorphism is a bijective lattice�homomorphism whose inverse

map is again a lattice�homomorphism.

Please note that the de�nition of lattice�homomorphisms and �isomorphisms

agree with the de�nition of homomorphisms and isomorphisms for algebras of

type (2; 2), of which lattices are concrete instances, ans similarly for semilattice�

homomorphisms.

Now consider the lattices B2, the four�element boolean algebra, and L4, the

four�element chain:
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It is easily seen that there is an order�homomorphism from B2 to L4, e.g.

given by 0 7! 0, 1 7! 1, a 7! c and b 7! d. However, it also rather obvious that

this map is not a lattice�homomorphism. The reason for this discrepancy lies in

the asymmetry of the constraints on mappings to preserve relations on one hand

and to preserve functions on the other hand. Relational homomorphisms such

as order�homomorphisms are only preserving in one direction, e.g. if x � y,

then �(x) � �(y). There is nothing said about the case where x and y are

incomparable. �(x) may be incomparable to �(y), but not necessarily. On the

other hand, when operations such as Sup are considered, every pair of elements

x; y has to satisfy Sup �(x); �(y) = �(Sup x; y) for � to preserve Sup , so the

constraint is not a conditional one, but a generally formulated identity.

For those among you who feel uncomfortable with the above elaborations
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since they emphasize the weak point of relational homomorphisms in the sense

that, although a and b are not in relation, their images c and d are comparable,

we add another example which circumnavigates this point.

Example 11.5.1 Taking L4 from above, we de�ne L4?> to be the lattice re-

sulted from adding a new least element ? and a new greatest element > to L4.
Then, the map from L4 to L4?> given by 0 7! ?, 1 7! >, a 7! a and b 7! b is

an order�homomorphism but not a lattice�homomorphism. (Proof: Exercise.)

So we notice that

Proposition 11.5.2 IfA andB are lattices, then every lattice�homomorphism
� : A �! B is a order�homomorphism. The converse is not true in general.

Proof. For the �rst part, we note that in a lattice, a � b is equivalent to

Inf a; b = a. The rest is simple.

The second part was done by mentioning the above examples.

As we can see, lattice�homomorphisms contain more structural information

than order�homomorphisms.

11.6 Distributivity via Sublattices

Distributivity and modularity of lattices is easily formulated using equations (or

identities). It is clear that an arbitrary lattice can be tested for distributivity

by checking if the laws of distributivity hold for any triple of elements of the

lattice. However, there is a better, more universal way for this.

If L = hL;u;ti is a lattice, then a sub�lattice of L is a subalgebra of L
(viewed as an algebra of type (2; 2)).

Lemma 11.6.1 For any lattice L, the following two statements hold:

1. If L is modular, then so is any sub�lattice of L.

2. If L is distributive, then so is any sub�lattice of L.

Proof. Trivial.

If you succeeded in exercises 11.2.2 and 11.2.4, you will know by now that

M3 andN5 are examples of non�distributive lattices and thatN5 is an example

of a non�modular lattice.
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The rather surprising fact is that they are also the prototypes for the respec-

tive case in the sense of the following two Lemmata.

Lemma 11.6.2 If a lattice L is non�modular, then there is a sub�lattice of L
which is isomorphic to N5.

Proof. Assume L = hL;u;ti is non�modular. Then, there are x; y; z 2 L,

x � z such that xu(ytz) 6= (xuy)t(xuz). Since x � xuy and ytz � z = xuz,
we conclude xu (yt z) > (xuy)t z. Setting a := (xuy)t z and b := xu (yt z)
we thus have x � b > a � z.

We now claim that a and y are incomparable as are b and y. To see this,

assume y � a. Then, y � z, and we have

b = x u (y t z) = x u y (since y � z)

� (x u y) t z = a

i.e. b � a, contradicting b > a. Dual arguments show that y � b leads to a

contradiction. Thus, we conclude that y 6� a and y 6� b, from which we also

conclude (using b > a) y 6� b and y 6� a. Putting these last four facts together

we have proved the claim.

Since a < b, aky and bky imply that a, b, y, a u y and b t y are pairwise
distinct, we have the following situation:
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So it remains to show that b u y = a u y and a t y = b t y. Since x u y �
(x u y) t z = a � b, we have

x u y = x u y u y � a u y � b u y;
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and since b � x, we also have

b u y � x u y;

and thus

x u y = a u y = b u y:

Similarly for a t y = b t y.
It follows that fa u y; b t y; a; b; yg is a sublattice isomorphic to N5.

Lemma 11.6.3 If a modular lattice L is non�distributive, then there is a sub�
lattice of L which is isomorphic to M3.

To summarize, if L is non�distributive, then L has a sublattice which is

isomorphic either to N5 (in which case L is not even modular) or to M3 (in

which case L might still be modular).

We are thus left with the following alternative way of characterizing modu-

larity and distributivity of lattices.

Theorem 11.6.4 Let L be a lattice. Then

1. L is modular

i¤

L contains no sublattice isomorphic to N5

i¤

N5 is not isomorphically embeddable into L.

2. L is distributive

i¤

L contains no sublattice isomorphic to either N5 or M3

i¤

neither N5 nor M3 is isomorphically embeddable into L.



154 CHAPTER 11. ORDERS AS ALGEBRAS



Appendix A

A Proof for the Theorem of
×ós

In this section, we will give a proof of the Theorem of ×ós, the main theorem on

ultraproducts 7.2.11. For the notation, please recall Section 7.2, especially the

discussion following Exercise 7.2.3. Thus, for a 2
Q
s2S jAsj, s 2 S, ultra�lters

U and valuations h in
Q
s2S jAsj:

a(s) := as := �s(a) and aU := �U (a);

hs := �s � h and hU := �U � h:

Theorem of ×ós 7.2.11 (Main Theorem on Ultraproducts).
For a formal language L let hAs ; s 2 Si be a family of L�structures and U be
an ultra�lter over S. For the sake of readability, let B :=

Q
s2S As be the direct

product and A := B=U the ultraproduct of the family hAs ; s 2 Si under U .
Then, the following holds:

1. For any valuation h into B and for any L�formula ',

A j= '[hU ] i¤ fs 2 S ; As j= '[hs]g2 U :

2. For any L�sentence �,

A j= � i¤ fs 2 S ; As j= �g2 U :

The proof of Theorem 7.2.11 rests on two rather technical lemmata, which

we are going to state and prove beforehand. In order to keep notation readable,

we introduce the following abbreviation.

155
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For S;U ; hAs; s 2 Si; ' and h as in the preamble and Clause 1 of the theorem,
de�ne T ('; h) � S by

T ('; h) :=fs 2 S ; As j= '[hs]g :

Thus, T ('; h) is the set of indices s for which As is a model for ' under the
(projected) valuation hs. Using this convention, Clause 1 of the Theorem of ×os

may be written as

A j= '[hU ] i¤ T ('; h) 2 U :

The following lemma states that logic operators correspond to set theoretic

operations on the subsets of S in a quite natural way.

Lemma A.1 For some formal language L let hAs ; s 2 Si be a family of L�
structures and B :=

Q
s2S As. Then, for any valuation h into B and any L�

formulae '; and any variable x the following statements hold:

1. T (' ^  ; h) = T ('; h) \ T ( ; h);

2. T (:'; h) = S r T ('; h);

3. T (8x'; h) =
T
fT ('; h

�
x
b

�
) ; b 2 jBjg.

Proof.
1: T (' ^  ; h) = fs 2 S ; As j= ' ^  [hs]g

= fs 2 S ; As j= '[hs] and As j=  [hs]g
= fs 2 S ; As j= '[hs]g \ fs 2 S ; As j=  [hs]g
= T ('; h) \ T ( ; h)

2: T (:'; h) = fs 2 S ; As j= :'[hs]g
= fs 2 S ; As 6j= '[hs]g
= Sr fs 2 S ; As j= '[hs]g
= S r T ('; h)

3: T (8x'; h) = fs 2 S ; As j= 8x'[hs]g
= fs 2 S ; As j= '[hs

�
x
a

�
] for all a 2 jAsjg

= fs 2 S ; As j= '[hs
�
x
bs

�
] for all b 2 jBjg

(since �s is onto)

= fs 2 S ; As j= '[h
�
x
b

�
s
] for all b 2 jBjg

(since hs
�
x
bs

�
= (�s � h)

�
x
bs

�
= �s � h

�
x
b

�
= h

�
x
b

�
s

=
T
fT ('; h

�
x
b

�
) ; b 2 jBjg
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The next lemma will be used when dealing with universally quanti�ed for-

mulae in the proof of the main theorem. Together with Clause 3 of Lemma A.1

it will show that

T (8x ; h) 2 U i¤ T ( ; h
�
x
b

�
) 2 U for all b 2 jBj;

i.e. the set of indices s such that As j= 8x'[hs] is not in the ultra�lter U
if and only if there is a b0 2 B (a counter�example to 8x'[hs]! ) such that
T ( ; h

�
x
b0

�
) =2 U .

Lemma A.2 For some formal language L let hAs ; s 2 Si be a family of L�
structures, U an ultra�lter over S, and B :=

Q
s2S As. Then, for any valuation

h into B; any L�formula  ; and any variable x, the following holds:\
fT ( ; h

�
x
b

�
) ; b 2 jBjg2 U i¤ T ( ; h

�
x
b

�
) 2 U ; for all b 2 jBj:

Proof. To show that the l.h.s. implies the r.h.s. is easy, since\
fT ( ; h

�
x
b

�
) ; b 2 jBjg� T ( ; h

�
x
b

�
);

for any b 2 jBj. Thus, if
T
fT ( ; h

�
x
b

�
) ; b 2 jBjg2 U , then clearly also T ( ; h

�
x
b

�
)

for all b 2 jBj, since U is an ultra�lter and therefore is closed under supersets.
To show the other direction, we proceed by contraposition and assume thatT
fT ( ; h

�
x
b

�
) ; b 2 jBjg62 U . We have to �nd some b0 2 jBj such that T ( ; h

�
x
b0

�
) 62

U .T
fT ( ; h

�
x
b

�
) ; b 2 jBjg62 U i¤ S r

T
fT ( ; h

�
x
b

�
) ; b 2 jBjg2 U (since U is an

ultra�lter) i¤ V :=fs 2 S ; there is b0 2 jBj with s =2 T ( ; h
�
x
b0

�
)g2 U .

Therefore, s 2 V i¤ As 6j=  [h
�
x
bs

�
] for some b 2 jBj.

Now, for s 2 S de�ne Ds � jAsj by

Ds :=

8<:As; i¤ As j=  [hs
�
x
a

�
] for all a 2 jAsj

fa 2 jAsj ; As 6j=  [hs
�
x
a

�
]g; else.

(So, Ds contains either all the counter-examples, if there are any, or else all the

examples for  in As.)
Clearly Ds 6= ; for all s 2 S, and (using the Axiom of Choice! Cf. Appendix

B) we may conclude that
Q
s2S Ds 6= ; as well.

Claim: For any b 2
Q
s2S Ds,

T ( ; h
�
x
b

�
) =2 U :
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To see this, take any b 2
Q
s2S Ds and assume s 2 T ( ; h

�
x
b

�
). Then,

As j=  [h
�
x
b

�
s
]

by the de�nition of T ( ; [h
�
x
b

�
]), which is equivalent to

As j=  [hs
�
x
bs

�
];

so clearly

As j=  [hs
�
x
a

�
] for some a 2 jAsj; namely for a = bs:

By the de�nition of Ds we conclude that

Ds = jAsj;

hence,

As j=  [h
�
x
a

�
] for all a 2 jAj;

but this is in turn equivalent to

As j=  [hs
�
x
bs

�
] for all b 2 jBj

and thus,

s =2 V:

Since s 2 T ( ; h
�
x
b

�
) was arbitrarily chosen, we conclude that

T ( ; h
�
x
b

�
) � S r V;

and S r V =2 U , hence,
T ( ; h

�
x
b

�
) =2 U :

Thus, choosing any b 2
Q
s2S Ds as b0, we have T ( ; h

�
x
b0

�
) =2 U .

Using these lemmata, it is not very di¢ cult to prove the Theorem of ×os.

Proof (of the Theorem of ×os 7.2.11). Using Noetherian Induction on

the structure of ', we will show a somewhat stronger statement than Clause 1.

We show that

for all valuations h into B;A := B=U j= '[hU ] i¤ T ('; h) 2 U :

� If ' = t1
:
= t2 for L�terms t1; t2:
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A j= '[hU ] i¤ tA1 [hU ] = tA2 [hU ]

i¤ (tB1 [h])U = (t
B
2 [h])U

i¤ fs 2 S ; (tB1 [h])s = (tB2 [h])sg2 U
i¤ fs 2 S ; tA1 [hs] = tA2 [hs]g= T ('; h) 2 U :

� If ' = Ri(t1; : : : ; t�i) for L�terms t1; : : : ; t�i and a relation symbol Ri:
A j= '[hU ] i¤ htA1 [hU ] ; tA�i [hU ]i2 R

A
i

i¤ htB1 [h]U ; tA�i [h]U i2 R
A
i

i¤ fs 2 S ; h(tB1 [h])s ; (tB�i [h])si2 R
As
i g2 U

i¤ fs 2 S ; htAs
1 [hs] ; t

As

�i
[hs]i2 RAs

i g2 U
i¤ fs 2 S ; As j= '[hs]g2 U :

� If ' = : for an L�formula  :
A j= '[hU ] i¤ A 6j=  [hU ]

i¤ T ( ; h) =2 U (by the induction hypothesis)
i¤ S r T ( ; h) = T ('; h) 2 U (using Lemma A.1):

� If ' =  ^ # for L�formulae  ; #:
A j= '[hU ] i¤ A j=  [hU ] and A j= #[hU ]

i¤ T ( ; h) 2 U and T (#; h) 2 U
(by the induction hypothesis)

i¤ T ( ; h) \ T (#; h) = T ('; h) 2 U
(using Lemma A.1):

� If ' = 8x for an L�formula  and a variable x:
A j= '[hU ] i¤ A j=  [hU

�
x
a

�
] for all a 2 jAj

i¤ A j=  [h
�
x
b

�
U ] for all b 2 jBj

i¤ T ( ; h
�
x
b

�
) 2 U for all b 2 jBj

(by the inductive hypothesis)

i¤
T
fT ( ; h

�
x
b

�
) ; b 2 jBjg= T (8x ; h) = T ('; h) 2 U

(by Lemmata A.1 and A.2):
This proves Clause 1. For Clause 2 we note that for any L�sentence �
and any valuations h; h0 into B,

T (�; h) = T (�; h0):

Therefore,

A j= � i¤ A j= �[h] for all valuations h into B
i¤ T (�; h) 2 U for all valuations h into B (by i:)
i¤ fs 2 S ; As j= �[hs]g2 U for some valuation h into B

(by the above remark)

i¤ fs 2 S ; As j= �g2 U (since � is a sentence),
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which completes the proof of Clause 2 of the Theorem of ×os.



Appendix B

A Quick Introduction to
Set Theory

What appears in this Module as an appendix intended to grant self-containedness

should actually be put at the very beginning since Set Theory lies in the center

of almost every mathematical �eld of work. It is both the foundation of the

majority of the theories and subject of mathematical studies in itself.

In the 19th and the beginning of the 20th century, the increasing need for for-

mal foundation and axiomatic description of Mathematics led to the Axiomatic

Set Theory. Although we will not choose this approach to Set Theory, it is an

interesting fact that the foundation of Logic and Model Theory may be regarded

as rooted in the very same �elds for which it should provide the foundation. So

we will hint at the possibility to consider Set Theory as a formal theory in the

sense of this module, formalized in a very simple formal language of �rst�order

logic.

Figure B.1: Ernst Zermelo (1871-1953)
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B.1 What are Sets?

The aim of this section is to provide the framework wherein the set theoretical

notions essential for the understanding of this module will be de�ned.

The question which serves as a title for this section will not be answered.

The disappointment should not be too big, since by now we should have gotten

used to the fact that formal theories (and as such we must regard Set Theory)

do not describe the entities entirely, but merely provide a sets of �rules� or

�laws�which must hold for these entities. So what we will provide is a more or

less informal description of these rules, which in principle (and please keep this

in mind!) could be formalized as �rst�order axioms.

The entities considered in Set Theory are exclusively sets and classes. In

fact, the main raison d�être for the axioms of Set Theory is to state that certain

operations preformed on sets produce still sets. Sets may contain elements,

which themselves are also sets (there is nothing else, remember). If a set contains

no elements, it is called empty. In fact, since Set Theory focuses on content and

not on structure, the elements of (entities contained in) a set are regarded as

presented all at once, so there is no order involved. This leads to the fact that

appart from the content, there is no way to distinguish sets. To be more precise,

Sets are equal if and only in they contain the same elements.

It is well�known that the fact that some set A belongs to (is contained in,

is an element of) another set B is symbolized by

A 2 B:

So the above formulation of the criteriom for identit�cation of sets may be

formalized as

A = B () 8x(x 2 A() x 2 B):

This is one of the axioms of Set Theory, the Axiom of Extensionality. Obvi-

ously, the above formalization is in a formal language of �rst�order logic with

one non�logical symbol, the binary relation symbol 2.
The Axiom of Extensionality has a direct consequence for sets without ele-

ments, namely that there exists at most one empty set. It is common practise

to denote this empty set, whose existence will be guaranteed by other axioms,

by ;.
This is about everything we can say about what sets are. We now rather

concentrate on how they behave and how we may build new sets from given

ones. To this end, Set Theory provides the following set of axioms. To simplify

notation, we use the generally accepted symbols and abbreviations:
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� A 2 B denotes the fact that A is an element of B;

� A � B (�A is subset of B�) denotes the fact that every element of A is

also an element of B;

� We will write A [ B to denote the union of A and B, i.e. the set which

contains exactly all the element in A or B; similarly,
S
A denotes the

union of the elements of A, i.e. the set which contains exactly all the

elements contained in some element of A;

� A \ B to denote the intersection of A and B, i.e. the set which contains

exactly the elements that are both in A and in B; similarly,
T
A denotes

the intersection of the elements of A, i.e. the set which contains exactly

the elements contained in all elements of A

� A and B are called disjoint if A \B = ;;

� ; for the set containing no elements;

� P(A) for the powerset of A, i.e. the set of all subsets of A;

The standard universe of sets as we make use of in our mathematical studies

is in fact grounded on a rather simple set of axioms. These axioms together

formalize the Set Theory of Zermelo and Fränkel with Choice, ZFC for short. It

is only one of a big variety of theories intended to serve as a foundation of the

mathematical universe, but it is also the most generally accepted.

Axiom of Pairing For any sets x and y, there is a set containing both x and y as elements.

Axiom of Union For any set x, there is a set z such that for any y 2 x, y � z.

Axiom Scheme of Separation (Comprehension) For any set x and any formula ' in the formal language of Set Theory

having at most one free variable, there is a set, denoted by fy 2 x ; '(y)g,
which contains all the elements of x which satisfy '.

Axiom of Regularity Any non�empty set x contains an element which is disjoint to x.

Axiom of In�nity There is a set x such that ; 2 x and for any y, if y 2 x, then y [ fyg 2 x.

Power set Axiom For any set x there is a set containing all the subsets of x as elements;

The Axiom of Choice Given a set x of nonempty pairwise disjoint sets, there exists a set that

contains exactly one element of each set in x; alternatively, the cartesian

product of a non�empty family of non�empty sets is non�empty.



164 APPENDIX B. A QUICK INTRODUCTION TO SET THEORY

Figure B.2: Kazimierz Kuratowski (1896-1980)

This set of axioms is clearly in�nite, but it is also countable (a notion we

will only be able to de�ne on the basis of these axioms ...) and it is of a simple

form, or more precisely, decidable. By this we mean that there is a rather

simple procedure to decide whether any given sequence of symbols from the

language of Set Theory is one of the axioms. But nevertheless the theorems

of this axiom�system provide (under the correct and intended interpretation)

astonishing results. Let us have a look at how the universe of sets is populated

with increasingly more complicated entities by use of these axioms.

That there is a set at all is a direct consequence of the Axiom of In�nity.

Constructions such as direct products, relations and functions are equally made

possible by these axioms, as we want to show in the next few paragraphs.

From the Axiom of Pairing, we may conclude that the bf ordered pair hx; yi
exists for any two sets x and y, where hx; yi is given by the following de�nition
originating from Kuratowsky:

hx; yi:= ffxg; fx; ygg:

The main purpose behind this seemingly rather arbitrary de�nition is to

bring back some order in the otherwise order�and structure�less notion of sets.

In an ordered pair, we may uniquely identify the �rst and the second component.

This is formalized by the following result, whose proof is left as an exercise:

hx1; y1i=hx2; y2i if and only if x1 = x2 and y1 = y2:

Using ordered pairs, we may continue to de�ne set�like objects which have

more structure than mere sets: Relations and functions. A relation, as should
be remembered, is a set of ordered pairs. To be more precise, a relation between

the sets A and B is a set of ordered pairs ha; bi with a 2 A and b 2 B. A

function f from a set A to a set B, on the other hand, is a relation between A

and B such that for any a 2 A there is exactly one b 2 B such that ha; bi2 f .
The usual conventions for functions and relations apply, but to mention
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them all would turn this appendix into a book or module of its own. The

important point is this: Functions and relations between sets can be shown to

exist according to the axioms of ZFC, but not all of them are describable by

nice formulas. As to how many functions and relations exist between two sets,

is subject to additional axioms we will not discuss here. But nicely describable

ones are easily proved to exist on the basis of our axioms.

Having de�ned relations and functions, we may continue towards tuples and

families, direct products and direct powers. We may also show that the existence

of structures in the sense of Model Theory, algebras and ordered sets can be

taken for granted in our set�theoretically embedded universe.

But there are entities which provably are no longer sets since they are too big

or too general in nature. The entities we are talking about are called (proper)
classes, re�ecting the idea that sets are a specialization of the notion of classes.
Thus all sets are classes, but not vice versa. The most prominent example of

a proper class is the class of all sets V . In fact, this class is to blame for the

arising of axiomatic Set Theory early in the last century, when Bertrand Russell

observed that the acceptance of V as a set leads to the following antinomy: If

V is a set, then so is the subset R of all elements of V which are not member

of itself,

B :=f2 V ; x =2 xg :

There are two cases to consider: (1) If B 2 B, then B =2 B by the de�nition

of B, so the assumption B 2 B leads to a contradiction. So we conclude (2)

B =2 B. However, this is equally contradictive, since then (again by the de�nition
of B) B 2 B. So we arrive at the contradiction

B 2 B if and only if B =2 B:

The way out of this antinomy is to exclude the class V from the collection

of sets, since then B no longer is provably a set. To be more precise, we are

only allowed to accept sub�classes as sets if they are sub�classes of sets which

are separated from their parent�set by a formula in the language of axiomatic

Set Theory, which is exactly the content of the Axiom Scheme of Separation.

From the fact that the class of all sets V is a proper class, we �nd many

other examples of proper classes. Especially, as has been mentioned in Section

4.1, any class L�structures is a proper class. Also, any class of models (apart
from the empty class!) of a set � of L�sentences is a proper class. The proof is
left as an exercise.

Finite sets such as ;, fff;g; ;gg are no real challenge to our imagination.
But matters tend to get a little more confusing and less intuitive when we start

dealing with in�nite sets. But to be able to distinguish between �nite and
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Figure B.3: Abraham Fraenkel (1891-1965)

in�nite sets at all, we must have a measure for the size of sets, a measure of

counting the elements provided purely within the set�theoretical framework.

B.2 Ordinals, Cardinals

The concept of cardinality is an abstraction of the numbering and counting of

our everyday experience. Counting is a �nite process by which we attach a

natural number (whatever that is) to a certain collection of entities or objects.

In Set Theory, the concept of cardinals (or cardinal numbers) is abstracting the

process of counting the elements.

Before we can de�ne what a cardinal is, we need to know what an ordinal

is:

De�nition B.2.1 If A is a set and R is a binary relation on A, R is said to

well�order A (or �R is a well�ordering on A�, or hA;Ri is a well�order, or A is
well�ordered by R) if R is re�exive, anti�symmetric, transitive, total and every

non�empty subset of A contains a minimal element with respect to R. Thus,

using in�x�notation, hA;Ri is a well�order if and only if

� R � A�A;

� for all x 2 A, xRx;

� for all x; y 2 A, xRy and yRx imply x = y;

� for all x; y; z 2 A, xRy and yRz =) xRz;

� for all x; y 2 A, xRy or yRx;

� for all B � A, B 6= ; there is a x 2 B such that for no y 2 B, yRx.

Thus, a well�ordering is an total, well�founded1 order in the sense of Chapter

3.
1We use well�founded here rather than noetherian to establish some connection to the

Axiom of Regularity which is sometimes also called the Axiom of Foundation.
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One of the key features of Ordinal Numbers will be that they are transitive

sets well�ordered by �, so this is a good moment to introduce the notion of a
transitive set:

De�nition B.2.2 A set A is called transitive if every element of A is also a

subset of A, i.e. if x 2 A; y 2 x =) y 2 A.

De�nition B.2.3 A set A is an Ordinal (Number) i¤ the following proper-
ties hold;

(i) if b 2 A then b � A;

(ii) for all a; b 2 A , either a 2 b, b 2 a or a = b;

(iii) for all B � A, B 6= ;, there is a b 2 B such that b \B = ;.

The following observations provide an abundance of examples for ordinals:

; is an ordinal. If � is an ordinal, then so is � (�) := � [ f�g. If � is a set of
ordinals, then

S
� and

T
� are both ordinals.

The �nite ordinals are de�ned by induction:

� ; is a �nite ordinal;

� if n is a �nite ordinal, then so is � (�);

� no other sets are �nite ordinals.

The �nite ordinals mirror the process of counting as mentioned above. There-

fore it is usual to denote �nite ordinals by numbers (or numerals) according to

the inductive rules 0 := ; and n + 1 :=� (n). Via this de�nition, the natural

numbers are represented in Set Theory, and with a little additional work, we

are able to represent the whole arithmetic in the framework of Set Theory. But

this is not the aim of this chapter, our goal lies in the direction of in�nity.

It is not very di¢ cult to see that the set of �nite ordinals is again an ordinal.

Of course this new ordinal (we call it !) is not a �nite ordinal; as a matter of

fact, it is the smallest in�nite ordinal in the sense that any ordinal which is not

�nite contains ! as an element.
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Appendix C

Exercises

C.1 Chapter ??

Exercise C.1.1 Show that, for a family hXi ; i 2 Ii (I 6= ;) and �i :
Q
i2I Xi�! Xi

the canonical projection onto the ith component, there is a very natural bijective

correspondence between
Q
i2I Xi = ker �i and Xi.

Exercise C.1.2 Show that for any �lter F over the set I, the relation �F
de�ned on the direct product

Q
i2I Xi by

hxi ; i 2 Ii�F hyi ; i 2 Ii i¤ fi 2 I ; xi = yig2 F

is an equivalence.

Exercise C.1.3 Show that PcofS is a �lter on S.

Exercise C.1.4 Show that the canonical embedding � : X �! XS=F de-

�ned by �(x) := [hx ; s 2 Si] is 1�1 for any �lter F .

C.2 Chapter 3

Exercise C.2.1 Show that in an ordered set,

(a) greatest and least elements of are unique, provided they exist;

(b) any greatest element of some subset S is a maximum of S, and any least

element of S is a minimum of S;

(c) maxima and minima need not exist for a given subset, and even if they

exist, they need not be unique.

169
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Exercise C.2.2 Show that in an ordered set, least upper bounds and greatest
lower bounds of subsets are unique, whenever they exist.

Exercise C.2.3 Prove the statements in Example 3.1.10; especially, show that
there are no covers in (R; �), Inf f1=n;n 2 Ng = 0 and that in Example 2, the
atoms are exactly the prime numbers while there are no coatoms.

Exercise C.2.4 Why do the special cases Sup ; and Inf ; coincide with ?X
and >X respectively, provided they exist?

Exercise C.2.5 Let U 6= ; be any set and pick a nonempty proper subset U0
of U . De�ne S :=fZ � U ; U0 6� Zg. Show that with the order � given by

Z1 � Z2 i¤ Z1 � Z2, hS;�i is a Sup�semilattice but not an Inf -semilattice;
moreover, calculate the semilattice operation for hS;�i.

Exercise C.2.6 Show that for any lattice hL;�i and all x; y 2 L,

Sup fx; Inf fx; ygg = x; and

Inf fx; Sup fx; ygg = x:

Exercise C.2.7 Show that for the divisibility order � on N, Inf fm;ng =
g.c.d. of m and n and Sup fm;ng = l.c.m. of m and n.

Exercise C.2.8 Show that the power set P(X) of any set X is a complete

lattice under the order of set�inclusion.

Exercise C.2.9 Show that every complete lattice L has a least element ?L
and a greatest element >L.

Exercise C.2.10 Show that N with the order of divisibility is a complete lat-
tice.

Exercise C.2.11 Show that for any closure system C and any closure operator
C, CC is a closure operator and that CC is a closure system, and that moreover

CCC = C and CCC = C:

C.3 Chapter 4

Exercise C.3.1 Show that ModTh and ThMod are closure operators.
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Exercise C.3.2 Show that for any A;B 2 StrL and ' SenL,

A � B i¤ [A j= ' i¤ B j= ']:

Exercise C.3.3 Show that if � ` ' with ' 62 L(�), then ` '.

Exercise C.3.4 Let L be a formal language. Show that

(a) cardTmL � cardFmlL = card SenL;

(b) If L is countable, then so are TmL, FmlL and SenL;

(c) if cardL is in�nite, then cardTmL � cardL = cardFmlL;

(d) for any set X, if cardL � cardX, then cardTmLX = cardFmlL =

cardX.

Exercise C.3.5 Let L be the language having � as only non�logical sym-

bol, and consider the two L�structures A := hf(0; 1); (1; 0)g;�i and B :=

hf(0; 0); (1; 1)g;�i, where in both cases � is the point�wise ordering. Show

that there is a L�homomorphism that is both injective and surjective, but A
and B are not isomorphic.

Exercise C.3.6 Show that for a homomorphism � : A �! B, the following
are equivalent:

(i) � is a L�isomorphism;

(ii) � is injective and surjective and ��1 is a L�homomorphism;

(iii) � is injective and surjective and

RAi (a1; : : : ; a�(i)) i¤ R
B
i (�(a1); : : : ; �(a�(i)))

for all relation�symbols Ri of L and all a1; : : : ; a�(i) 2 jAj.

Exercise C.3.7 Show that for any isomorphism � : A �! B, the inverse map
��1 is an isomorphism from B to A

Exercise C.3.8 Treat the cases ' � Ri(t1; : : : ; tn) and ' � # ^  in the proof
of Theorem 4.4.6.

Exercise C.3.9 Write out the details in the proof of Lemma 4.4.7.
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C.4 Chapter 5

Exercise C.4.1 Show that equipotency, as introduced in Section 5.1 using bi-
jections, is an equivalence relation.

Exercise C.4.2 Since A is regarded as of smaller cardinality than B if there

is a injective mapping from A to B, what kind of mappings from B to A would

in an equally plausible way constitute the fact that B is larger than A?

Exercise C.4.3 How do we get to the contradiction in the Diagonal argument?

Exercise C.4.4 Show that for � � SenL, ' 2 FmlL and c a new constant�
symbol not in L,

if, in L [ fcg,� ` ' (x=c) then, in L, � ` ':

Exercise C.4.5 Show that for � � SenL consistent,

(a) if '(x) 2 PropL and c is a new constant�symbol not in L, then � [
f9'(x)! '(c)g is a consistent set of L [ fcg�sentences;

(b) if '1(x1); : : : ; 'n(xn) 2 PropL and c1; : : : ; cn are pairwise distinct, new
constant�symbols not in L, then

�[ f9'1(x1)! '1(c1); : : : ;9'n(xn)! 'n(cn)g

is a consistent set of L[ fc1; : : : ; cng�sentences;

(c) if S is any set, f's(xs) ; s 2 Sg� PropL and fcs ; s 2 Sg a set of pairwise
distinct new constant�symbols not in L, then

�[ f9's(xs)! 's(cs) ; s 2 Sg

is a consistent set of L[ fcs ; s 2 Sg�sentences.

Exercise C.4.6 Show that for f�s ; s 2 Sg a set of consistent sets of L�sentences
linearly ordered by �,

S
s2S �s is consistent.

Exercise C.4.7 Show that a sentence � 2 SenL having a model has a count-
able model.

Exercise C.4.8 Show that a (consistent) theory having only uncountable mod-
els cannot be axiomatized by countably many axioms or in a countable language.
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Exercise C.4.9 Which of the sets N, Z, Q, R, C, N2 are countable?

Exercise C.4.10 Let C :=fc� ; � < �g be a set of cardinality � of (pairwise
distinct) constant�symbols. Let � :=f:c := c0 ; c; c0 2 C; c 6= c0g. Show that for
any language L and any LC�structure A, if A j= �, then card jAj � �.

Exercise C.4.11 Analyze the proof of Proposition 5.4.2 to �nd out why the
model of � has to be in�nite.

Exercise C.4.12 Show that there is a set � of L�sentences (for an adequate
language L) such that A is a model for � i¤A has either exactly one or in�nitely
many elements.

(Hint: Consider � :=f(8xx :
= x) _ :c := c0 ; c; c0 2 C; c 6= c0g for adequate C.)

Exercise C.4.13 In the proof of Theorem 7.4.1, explain how the L0�structures
As have to be de�ned (w.r.t. the interpretations of the new constant symbols).
Explain in more detail why they exist.

C.5 Chapter ??

Exercise C.5.1 Show that the assignment a0n 7! b0n from the proof of Propo-

sition 6.2.2 does indeed de�ne an isomorphism.

Exercise C.5.2 In the construction of the proof to Proposition 6.2.2, run the
�rst few steps with your favorite enumerations of Q and (0; 1) \ Q. (If you do
not have a favorite enumeration of (0; 1) \ Q, take the enumeration of Q and

restrict it to the interval (0; 1).)

Exercise C.5.3 Show that f� 2 R ; 0 < � < 1g [ fq 2 Q ; 1 � q < 2g is a dense
order without endpoints under the usual order.

Exercise C.5.4 Is it possible to apply the construction of the proof to Propo-
sition 6.2.2 to show that, under the usual order,

(a) Rr f0g and R are not isomorphic;

(b) hA \Q;�i and Q are not isomorphic?
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C.6 Chapter 6

Exercise C.6.1 Show that for any language L, SenL is the only inconsistent
L�theory.

Exercise C.6.2 Show that any complete set of L�sentences is a L�theory.

Exercise C.6.3 Show that for L�structures A;B,

ThA � ThB i¤ A � B:

Exercise C.6.4 Show that any elementary class K is closed under elementary
equivalence.

C.7 Chapter 7

Exercise C.7.1 Is Z2�Z2 �with operations de�ned by component � a �eld?

Exercise C.7.2 Show that an ultra�lter U over some set S is �xed at some

p 2 S i¤
T
U 6= ;.

Exercise C.7.3 Show that U � P(S) is an ultra�lter over S i¤ U is a prime
�lter over S, i.e. i¤, for any U; V � S, U [ V 2 U implies U 2 U or V 2 U .

Exercise C.7.4 Show that if U is an ultra�lter over some set S and U 2 U
with U = U1 [ : : : [ Un, then Ui 2 U for some i 2f1; : : : ; ng.

Exercise C.7.5 Show that PcofN is a �lter over N.

Exercise C.7.6 Let X 6= ;, S :=fs � X ; s �niteg and Tx :=fs 2 S ; x 2 sg
(for all x 2 X). Is fTx ; x 2 Xg a �lter or not?

Exercise C.7.7 Show that for any ultrapower AS=U of a L�structure A, the
function � : A �!AS=U given by �(a) :=ha ; s 2 SiU is an embedding of A
into AS=U .

Exercise C.7.8 For n 2 N, �nd a L�sentence holding in a L�structure A i¤

jAj has exactly n elements.

C.8 Chapter 8

Exercise C.8.1 Use the argumentation of 8.1.7 to show that, for any language
L and for anyK � StrL, if for any n 2 N there is aA 2 K�n with card jAj >= n,

then K�n is not elementary.
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C.9 Chapter 9

Exercise C.9.1 What operations are possible in an empty algebra?

Exercise C.9.2 Try to �nd group laws as in Example 9.1.4 which characterize
groups among all algebras of type (3), or show that there are no such laws.

Exercise C.9.3 Using Remark 9.1.3, write a detailed proof for the fact that
a constant of A will be mapped to the corresponding constant of B under any

homomorphism � 2 Hom(A;B).

Exercise C.9.4 Find a simple example of two similar non�isomorphic algebras.

Exercise C.9.5 Verify for groups, rings and vector spaces that the respec-
tive de�nitions of homomorphisms match with the de�nition given in De�nition

9.2.1, i.e. show that for example group homomorphisms coincide with homo-

morphisms of groups as universal algebras.

Exercise C.9.6 Show that any valuation h into an L�structure A determines

an L�homomorphism �h : TL �! A from the term�algebra TL into A, given
by �h(t) := tA[h]. Also verify that if the language is functional, �h is a homo-

morphism in the sense of De�nition 9.2.1.

Exercise C.9.7 Show that if groups are considered as algebras of type (3) with
the operation m as de�ned in 9.1.4.4, the subalgebras are exactly the co�sets

(left or right) of ordinary subgroups of G and ;.

Exercise C.9.8 Prove Proposition 9.3.3, i.e. show that for all algebras A and

Bany � 2 Hom(A;B),

1. if S 2 SubA, then �[S] 2 SubB;

2. if T 2 SubB, then ��1[T ] 2 SubA;

3. the union of a chain of subuniverses of A is a subuniverse of A, and the

union of a directed system of subuniverse of A is a subuniverse of A.

Exercise C.9.9 Show that if hSk ; k 2 Ki is any family of subuniverses of an
algebra A, then the set intersection

T
k2K Sk is a subuniverse of A.

Exercise C.9.10 Find an algebra A and subuniverses B and C of A such that

B[C is not a subuniverse of A.
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Exercise C.9.11 Consider the group hZ; +;�; 0i, and let X := f2g. Moreover
let G = f+;�; 0g be the set of fundamental operations of Z.
Write out detailed calculations of G0[X]; G1[X]; G2[X] and G3[X] according

to De�nition ??. Is there a general way to describe Gn[X]? And can you show
directly (i.e. without using Lemma ?? or a similar result) that

S
n2NG

n[X] is

the set of even integers?

Exercise C.9.12

1. Verify in detail that hZ; +;�; 0i is not locally �nite.

2. Verify that ZN2 , the product of countably in�nite many two�element groups
with operations de�ned componentwise, is locally �nite but not �nitely

generated.

3. Show that every �nite algebra is locally �nite.

4. Show that there is no in�nite, locally �nite, �nitely generated algebra.

Exercise C.9.13 Show that the additive group of rational numbers has no

maximal subgroups.

Exercise C.9.14 Show that

1. In every algebra, the smallest subalgebra is the subalgebra generated by

;.

2. If there are nullary operations, A[;]=A[fc ; c is a constantg].

Exercise C.9.15 Show that both hQ; +;�; 0i and hZ; +;�; 0i have no minimal
subgroups.

Exercise C.9.16 Show that the following constructions fall into the scope of
the de�nition of a direct product of (universal) algebras:

1. The direct product of groups.

2. The direct product of rings.

3. The direct product of �elds.

4. The direct product of vector�spaces.

Exercise C.9.17 Show that the projections �k associated with the notion of
direct products are surjective homomorphisms from

Q
k2K Ak onto Ak for any

collection.
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Exercise C.9.18 LetB andAk (k 2 K) be similar algebras, and gk : B �! Ak

a surjective homorphism for each k 2 K. Show that there is a uniquely deter-
mined surjective homomorphism g : B �!

Q
k2K Ak satisfying gk = �k � g for

all k 2 K.

Exercise C.9.19 Show that h : A �! B is a homomorphism from A into B

i¤ fha; h(a)i ; a 2 Ag is a subuniverse of A�B.

C.10 Chapter 10

Exercise C.10.1 De�ne a relation # on Q by a#b if and only if a � b 2 Z.
Show that

1. # is an equivalence.

2. # is compatible with + and �.

3. # is not compatible with �.

4. # is a congruence on the additive group hQ; +;�; 0i but not on the ring
hQ; +;�; �; 0; 1i.

Exercise C.10.2 Show that if # is a congruence on A, then �# : A �! A =#

is a surjective homomorphism.

Exercise C.10.3 Prove Proposition 10.1.3: For any algebra A, the congru-
ences on A are precisely the kernels of the homomorphisms with source A.

Exercise C.10.4 Modify the proof of Theorem 10.1.5 to show that for any

� : A �! B, �[A] �= A = ker �.

Exercise C.10.5 Show that for congruences #; � 2 ConA, #=� is a binary

relation on A and #=� 2 ConA.

Exercise C.10.6 For #; � 2 ConA, show that � : (A =�)=(#=�) �! A =#

with �([[a]�]�=�) := [a]# is well�de�ned and an isomorphism.

Exercise C.10.7 Which of the following statements is true?

1. For any algebra A, any # 2 ConA and any subset B � A, B# is a

subuniverse of A.

2. For any algebra A and any # 2 ConA, the assignment B 7! B# de�nes

a closure operator on A.



178 APPENDIX C. EXERCISES

Exercise C.10.8 Show that � : B =(# \B2) �! B# =(# \B#2) with

�([b]#\B2) := [b]
#\B#

2 :

is well�de�ned and an isomorphism.

Exercise C.10.9 Show that for a normal subgroupN of a group G, the relation

#N on G with a#Nb if and only if aN = bN is an equivalence relation.

Exercise C.10.10

1. Is the relational product commutative? Is it associative?

2. What if we restrict ourselves to equivalences on some set A?

3. Given two equivalences #, � on some set A, is the relational product # � �
always an equivalence?

4. Show that for # 2 Eq A, # � # = #.

Exercise C.10.11 Show that �A is the unit element with respect to the rela-
tional product � for any set A. On the other hand, �nd a set A and R � A�A
such that R �R�1 6= �A.

Exercise C.10.12 Show that for #1; #2 � A2, we have

(a) #1 � #�12 = #�12 �#�11 ;

(b) #1 � #2 i¤ #
�1
1 � #�12 .

Exercise C.10.13 Show that for # 2 Eq A, we have #�1 = #.

Exercise C.10.14

1. Does Sup� =
S
� imply that � is directed?

2. Does Sup� =
S
� hold for directed sets � of equivalences?

Exercise C.10.15 Complete the proof of Proposition 10.2.8, i.e. show that for
any set� of congruences on an algebraA and � :=f#0 � : : : � #n ; n 2 N; #0; : : : ; #n 2 �g,

1. # �
S
� for any # 2 �;

2.
S
� is a congruence;
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3. #0 � : : : � #n � Sup� for all n 2 N and all #0; : : : ; #n 2 �.

Exercise C.10.16 Show that for #1; #2 2 ConA, the following are equivalent:

(i) #1 � #2 = #2 � #1;

(ii) Sup f#1; #2g = #1 � #2;

(iii) #1 � #2 � #2 � #1.

Exercise C.10.17 Show that � : [#;rA] �! ConA =# with �(�) := �=# is a

lattice�isomorphism.

Exercise C.10.18 Show that ifA is an algebra and � � ConA, then Sup� =
�(
S
�).

Exercise C.10.19 Show that all but �nitely many congruences on Z are of the
form �(ha; b; )i and �nd the exceptions.

Exercise C.10.20 Show that the generation of congruences de�nes a closure
operator, i.e. show that

(i) R � �(R),

(ii) �(�(R)) = �(R) and

(iii) R � S implies �(R) � �(S)

for all subsets R;S of some algebra.

Exercise C.10.21 Show that for any congruence #, the set f�(R) ; R � #;R �niteg
is directed.

Exercise C.10.22 Which of the equations in Proposition 10.3.5 hold if �con-
gruence�is replaced by equivalence (and consequently generation of congruences

by generation of equivalences)?

Exercise C.10.23 Let a be a compact element of a complete lattice. Show
that if SupC � a for a chain C � A, then c � a for some c 2 C.

Exercise C.10.24 Find proofs for the following statements:

(a) Every complete lattice has at least one compact element.

(b) Finite lattices consist of compact elements exclusively.

(c) The compact elements in the complete lattice hP(X);�i are exactly the
�nite Y � X.

Exercise C.10.25 Find an example of a non�algebraic complete lattice.
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C.11 Chapter 11

Exercise C.11.1 Prove Proposition 11.1.4, i.e. show that

1. If hL;�i is a lattice (as a poset), then hL; Sup�; Inf�i is a lattice (as an
algebra).

2. If hL;t;ui is a lattice (as an algebra), then the two order�relations �t
and �u as de�ned in Proposition 11.1.2 are identical and hL;�ti is a
lattice (as a poset).

3. The transformation is mutually connected by

hL;�t�i=hL;�i

and

hL;t�t ;u�ti = hL;t;ui :

Exercise C.11.2 Show that if � and � are congruences on some algebra, then
Inf and Sup of � and � computed as equivalences as in Example 11.1.5 1 are

indeed congruences again.

Exercise C.11.3 Let L = hL;u;ti be a lattice and let � be the order stem-

ming from u and t in the sense of Proposition 11.1.4. Show that x � x0 and

y � y0 imply x u y � x0 u y0 and x t y � x0 t y0, i.e.
u : L2 �! L and t : L2 �! L are order�preserving.

Exercise C.11.4 Show that any lattice satisfying Du (cf. De�nition 11.2.1)

also satis�es Dt and vice versa.

Exercise C.11.5 Find out which of the following �nite lattices are distributive:
2, N5, M3, B3 (cf. Example 3.1.16).

Exercise C.11.6 Find out which of the following �nite lattices are modular:
2, N5, M3, B3 (cf. Example 3.1.16).

Exercise C.11.7 Show that a lattice L = hL;u;ti is modular i¤

((x u z) t y) u z = (x u z) t (y u z)

for all x; y; z 2 L.
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Exercise C.11.8 Show that in a distributive lattice any element has at most
one complement.

Exercise C.11.9 Show that in a chain, only the top and bottom elements have
complements, so chains considered as lattices are not complemented if they have

more than two elements.

Exercise C.11.10 Show that for any in�nite set X, the lattice with all �nite
and co�nite subsets of X as its carrier set and with the operations of set union

and intersection is a Boolean lattice.

Exercise C.11.11 Which open subsets of R have an open complement in R?
And which open subsets of R2 have an open complement in R2?

Exercise C.11.12 Show thatM3? as depicted below is a lattice where exactly

1M3 and ? have complements, and where ? serves as a pseudocomplement of

everything except itself.

u
u

u
u u u

J
J
JJ

















J
J
JJ

0M3

1M3

?

M3?Exercise C.11.13 Let U be the collection of open subsets of R which are con-
tained in the open interval (�2; 2) but do not contain (�1; 1), together with all
intervals of the form (�2 � 1=n; 2 + 1=n), and ; and R. Show that ordered by
set inclusion, U is a meet semilattice with \ as Inf but not a lattice since, e.g.,
(�1:5; 0) and (0; 1:5) have no Sup within U .

Exercise C.11.14 Let L� be the formal language having the binary relation�
symbol � as its only non�logical symbol. Show that the class of lattices is

basic�elementary by �nding an appropriate set of L��sentences �L such that
Mod�L is exactly the class of lattices.

Exercise C.11.15 Let N̂ be the set N enriched by a new element >, and set

x �N̂ y i¤ [x; y 2 N and x � y] or y = >

for all x; y 2 N̂.
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(a) Show that �N̂ is an order on N̂ and that hN̂;�N̂i is a complete lattice.

Let U be an ultra�lter over N containing all co�nite subsets of N, and let
A :=N̂N=U . Show that

(b) A is a lattice with greatest element>A := h>;>;>; : : :iU and least element
0A := h0; 0; 0; : : :iU .

(c) all elements of A except >A and 0A have an upper and a lower cover.

(d) h0; 1; 2; : : :iU is an upper bound of N :=fn ; n 2 Ng in A, where n :=

hn; n; n; : : :iU .

� if b 2 jAj is an upper bound of N, then so is the lower cover of b. (Hint: If
such a lower cover c were not an upper bound of N, then for some n 2 N,
n � c � n+ 1, from which we conclude c = n or c = n+ 1. But then b,

being the upper cover of c, could not be an upper bound of N.)

(e) N does not have a supremum in A (and the set of upper bounds of N has
no in�mum).

Exercise C.11.16 Let L4 be the four element chain, and let L4?> be the

lattice resulted from adding a new least element ? and a new greatest element
> to L4. Show that the map from L4 to L4?> given by 0 7! ?, 1 7! >, a 7! a

and b 7! b is an order�homomorphism but not a lattice�homomorphism.

C.12 Chapter ??

C.13 Chapter ??

C.14 Chapter ??

C.15 Chapter B

Exercise C.15.1 Show that from the axiom of pairing, using First�order Logic,
we can proof that the ordered pair of any two sets exists.

Exercise C.15.2 Show that for any sets x1; x2; y1; y2,

hx1; y1i=hx2; y2i if and only if x1 = x2 and y1 = y2:
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Exercise C.15.3 Show that for any formal language L and any consistent set
� of L�sentences, Mod� is a proper class. (Hint: Take any model of � and any
element a in the universe of this model. Replace a by an arbitrary set and show

that the relations, functions etc. of the structure may be modi�ed in such a

way that the result is again a structure. The claim follows by the arbitrariness

of the set and the Axiom of Union.)
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Dt, 147

Du, 147

R1 �R2, 133
[u; v], 27

[v), 27

�(A), 122

ar(fs), 114

?, 27
ConA, 128

B#, 131

�(ha1; b1i; : : : ; han; bni), 138
�(R), 138

#=�, 130

dom f , 4

�, 37
EqX, 7

�U , 87
Hom(A;B), 118

k, 27
Inf�, 27

Inf , 27

Inf �semilattice, 28

R�1, 134

��calculus, 116

Ded, 70

Mod, 34

Str, 33

Th, 34

j=, 17
6j=, 17
PALG, 150

k L k, 60

PCS, 151

spanX, 31

SubA, 120

Sup�, 27

Sup , 27

Sup�semilattice, 28

>, 27
TmV L=�, 20
a(s) (in direct products), 88

aU (in direct products), 88

as (in direct products), 88

hU (for valuations in direct prod-

ucts), 88

hs (for valuations in direct products),

88

u � v, 27

v � u, 27

(Dedekind�) �nite, 59

(Dedekind�) in�nite, 59

×os, 93

absorption identities, 144

algebra, 114

algebraic closure operator, 140

algebraic lattice, 140

antichain, 27

antimonotonic, 35

antisymmetric relation, 23

Archimedean property, 90

arity, 114

assignment, 17

associative (operation), 143

atom, 27

186
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atomic formula, 15

automorphism, 129

Axiom of Choice, 167

Axiom of In�nity, 167

Axiom of Pairing, 167

Axiom of Regularity, 167

Axiom of Union, 167

Axiom Scheme of Separation (Com-

prehension), 167

basic�elementary class, 104

Boolean algebras, 149

boolean lattice, 148

bottom, 27

bound (occurrence of a variable), 15

cardinal (number), 57

cardinality of a language, 60

cardinality of a structure, 60

carrier (of a relation), 7

carrier (of an order), 23

categorical product, 125

chain, 24

chain of subuniverses, 121

closure operator, 31

closure system, 31

co�domain, 118

co��nite, 85

co�set, 120

co-domain, 4

coarser (congruence), 132

coatom, 27

combinatory algebra, 116

commutative(operation), 143

compact element in a lattice, 140

Compactness (Theorem), 19

comparable, 27

compatible, 128

complete (set of sentences), 71

complete lattice, 30

Completeness (Theorem), 18

Comprehension, Axiom Scheme of,

167

congruence, 128

congruence relation, 128

congruence�permutable (algebra), 137

congruence�permutable (class of al-

gebras), 137

consistent, 18

constant symbol (in formal languages),

14

Correctness (Theorem), 18

countable set, 59

countably in�nite set, 59

De Morgan algebras, 152

deductive closure, 70

designated elements, 115

Diagonal Argument, 58

direct power (of algebras), 124

direct product (of algebras), 124

direct product (of structures), 79

directed system of subuniverses, 121

distributive (lattice), 147

divisibility order, 24

domain, 4, 118

dual order, 24

Elementary class, 36

elementary equivalent, 37

empty algebra, 115

equipotency (of sets), 56

equipotent (sets), 56

equivalence relation, 7

extended reals, 30

extensive map, 31

f.i.p., 81

�lter, 9

�ner (congruence), 132

�nitary operations, 115

�nite (set), 58
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�nite intersection property, 81

�nitely generated algebra, 122

�nitely generated subuniverse, 122

�xed ultra�lter, 81

follows semantically, 17

formal language, 14

formula (of a formal language), 15

Fréchet�Filter, 85

Frattini algebra, 122

free (occurrence of a variable), 15

free ultra�lter, 82

function, 3

function symbol (in formal languages),

14

fundamental operations, 114

Galois�connection, 34

generated congruence, 138

generated �lter, 81

greatest element, 25, 27

greatest lower bound, 27

group, 116

group laws, 116

Heyting algebras, 152

homomorphic image, 118

homomorphism (of algebras), 118

Homomorphism Theorem, 129

idempotent map, 31

idempotent(operation), 143

incomparable, 27

inconsistent, 18

in�mum, 27

in�nite (set), 58

interpretation (of a symbol), 16

interpretation (of a term), 17

interval, 27

interval (in a lattice), 137

inverse of a relation, 134

isomorphic lattices, 148

lattice, 28

lattice (algebra), 144

lattice�homomorphism, 154

lattice�isomorphism, 154

lattices with pseudocomplementation,

150

least element, 25, 27

least upper bound, 27

left co�set, 120

lower bound, 27

lower cover, 27

lower end, 27

Main Theorem on Ultraproducts, 93

map, 3

mapping, 3

maximal subalgebra, 122

maximally proper �lter, 82

maximum, 25

meaning (of a term), 17

minimum, 25

Model Theoretic, 127

modi�ed assignment, 17

monotonic map, 31

negatomic formula, 15

noetherian order, 25

noetherian poset, 25

non�generator, 123

normal subgroup, 132

nullary operations, 115

occurrence of a variable, 15

open sets (in a topological space),

149

order(�relation), 23

order�isomorphism, 148

ordered set, 23

p�algebras, 150

p�semilattices, 151
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partial algebra, 115

partially ordered set, 23

permutable (congruence), 137

poset, 23

Post algebras, 152

Power set Axiom, 167

prime �lter, 82

principal congruence, 139

proper �lter, 81

pseudocomplement, 150

pseudocomplemented lattice, 150

pseudocomplemented semilattice, 151

quotient algebra, 128

quotient of congruences, 130

reduced power, 8

reduced product, 8

re�exive relation, 23

re�exivity, 7

relation symbol (in formal languages),

14

relational inverse, 134

relational product, 133

right co�set, 120

ring, 116

rough sets, 150

satisfaction (of a formula), 17

scope, 15

semantic consequence, 17

semi�lattice (algebra), 143

semilattice�homomorphism, 154

semilattice�operation, 143

sentence, 15

Separation, Axiom Scheme of, 167

Set Theory of Zermelo and Fränkel

with Choice, 167

similar algebras, 114

source, 118

source (of a function), 4

spanned sub�space, 31

strict order, 24

Strong Completeness (Theorem), 19

structure, 16

sub�lattice, 155

subalgebra, 120

supremum, 27

symmetry, 7

target, 118

target (of a function), 4

term�structure, 20

terms (of a formal language), 14

Theory, 36

top, 27

total (order), 24

totally ordered set, 24

transitive relation, 23

transitivity, 7

type, 114

ultra�lter, 80

ultrapower, 88

ultraproduct (of structures), 87

unitary ring, 116

universal algebra, 114

universal quanti�er, 15

universe (of an algebra), 114

universe (of an order), 24

upper bound, 27

upper end, 27

valid, 17

valid in a structure, 17

valuation, 17

variable assignment, 17

variable�free term, 14

well�founded, 25

ZFC, 167
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